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Cancer diagnosis

Problem 1
Given the expression levels of 20k genes in a leukemia, is it an acute
lymphocytic or myeloid leukemia (ALL or AML)?



Cancer prognosis

Problem 2
Given the expression levels of 20k genes in a tumour after surgery, is it
likely to relapse later?



Pharmacogenomics / Toxicogenomics

Problem 3
Given the genome of a person, which drug should we give?



Protein annotation

Data available
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Problem 4
Given a newly sequenced protein, is it secreted or not?



Drug discovery

inactive

active

active

active

inactive

inactive

Problem 5
Given a new candidate molecule, is it likely to be active?



A common topic



A common topic



A common topic



A common topic



On real data...



Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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Linear classifier



Which one is better?



The margin of a linear classifier
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The margin of a linear classifier



Largest margin classifier (hard-margin SVM)



Support vectors



More formally

The training set is a finite set of n data/class pairs:

S =
{

(~x1, y1), . . . , (~xn, yn)
}
,

where ~xi ∈ Rp and yi ∈ {−1,1}.
We assume (for the moment) that the data are linearly separable,
i.e., that there exists (~w ,b) ∈ Rp × R such that:{

~w .~xi + b > 0 if yi = 1 ,
~w .~xi + b < 0 if yi = −1 .



How to find the largest separating hyperplane?

For a given linear classifier f (x) = ~w .~x + b consider the "tube" defined
by the values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0



The margin is 2/‖ ~w ‖

Indeed, the points ~x1 and ~x2 satisfy:{
~w .~x1 + b = 0 ,
~w .~x2 + b = 1 .

By subtracting we get ~w .(~x2 − ~x1) = 1, and therefore:

γ = 2‖~x2 − ~x1 ‖ =
2
‖ ~w ‖

.



All training points should be on the correct side of the
dotted line

For positive examples (yi = 1) this means:

~w .~xi + b ≥ 1 .

For negative examples (yi = −1) this means:

~w .~xi + b ≤ −1 .

Both cases are summarized by:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
≥ 1 .



Finding the optimal hyperplane

Find (~w ,b) which minimize:
‖ ~w ‖2

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 .

This is a classical quadratic program on Rp+1.



Lagrangian

In order to minimize:
1
2
‖ ~w ‖22

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 ,

we introduce one dual variable αi for each constraint, i.e., for each
training point. The Lagrangian is:

L
(
~w ,b, ~α

)
=

1
2
||~w ||2 −

n∑
i=1

αi
(
yi
(
~w .~xi + b

)
− 1
)
.



Lagrangian

L
(
~w ,b, ~α

)
is convex quadratic in ~w . It is minimized for:

∇~wL = ~w −
n∑

i=1

αiyi~xi = 0 =⇒ ~w =
n∑

i=1

αiyi~xi .

L
(
~w ,b, ~α

)
is affine in b. Its minimum is −∞ except if:

∇bL =
n∑

i=1

αiyi = 0 .



Dual function

We therefore obtain the Lagrange dual function:

q (~α) = inf
~w∈Rp,b∈R

L
(
~w ,b, ~α

)
=

{∑n
i=1 αi − 1

2
∑n

i=1
∑n

j=1 yiyjαiαj~xi .~xj if
∑n

i=1 αiyi = 0 ,
−∞ otherwise.

The dual problem is:

maximize q (~α)

subject to ~α ≥ 0 .



Dual problem

Find α∗ ∈ Rn which maximizes

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . ,n), and

n∑
i=1

αiyi = 0.

This is a quadratic program on RN , with "box constraints". ~α∗ can be
found efficiently using dedicated optimization softwares.



Recovering the optimal hyperplane

Once ~α∗ is found, we recover (~w∗,b∗) corresponding to the optimal
hyperplane. w∗ is given by:

~w∗ =
n∑

i=1

αiyi~xi ,

and the decision function is therefore:

f ∗(~x) = ~w∗.~x + b∗

=
n∑

i=1

αiyi~xi .~x + b∗ .
(1)



Interpretation: support vectors

α>0

α=0



What if data are not linearly separable?



What if data are not linearly separable?



What if data are not linearly separable?



What if data are not linearly separable?



Soft-margin SVM

Find a trade-off between large margin and few errors.
Mathematically:

min
f

{
1

margin(f )
+ C × errors(f )

}
C is a parameter



Soft-margin SVM formulation

The margin of a labeled point (~x , y) is

margin(~x , y) = y
(
~w .~x + b

)
The error is

0 if margin(~x , y) > 1,
1−margin(~x , y) otherwise.

The soft margin SVM solves:

min
~w ,b

{
||~w ||2 + C

n∑
i=1

max
(
0,1− yi

(
~w .~xi + b

))}



Soft-margin SVM and hinge loss

min
~w ,b

{
n∑

i=1

`hinge
(
~w .xi + b, yi

)
+ λ‖ ~w ‖22

}
,

for λ = 1/C and the hinge loss function:

`hinge(u, y) = max (1− yu,0) =

{
0 if yu ≥ 1,
1− yu otherwise.

yf(x)

l(f(x),y)

1



Dual formulation of soft-margin SVM (exercice)

Maximize

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . ,n∑n

i=1 αiyi = 0.



Interpretation: bounded and unbounded support
vectors

C

α=0

0<α<C

α=



Primal (for large n) vs dual (for large p) optimization

1 Find (~w ,b) ∈ Rp+1 which solve:

min
~w ,b

{
n∑

i=1

`hinge
(
~w .xi + b, yi

)
+ λ‖ ~w ‖22

}
.

2 Find α∗ ∈ Rn which maximizes

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . ,n∑n

i=1 αiyi = 0.
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Sometimes linear methods are not interesting



Solution: nonlinear mapping to a feature space

2R

x1

x2

x1

x2

2

For x =

(
x1
x2

)
let Φ(x) =

(
x2

1
x2

2

)
. The decision function is:

f (x) = x2
1 + x2

2 − R2 =

(
1
1

)>( x2
1

x2
2

)
− R2 = β>Φ(x) + b .



Kernel = inner product in the feature space

Definition
For a given mapping

Φ : X 7→ H

from the space of objects X to some Hilbert space of features H, the
kernel between two objects x and x ′ is the inner product of their
images in the features space:

∀x , x ′ ∈ X , K (x , x ′) = Φ(x)>Φ(x ′) .

φ
X F



Example

φ
X F

Let X = H = R2 and for x =

(
x1
x2

)
let Φ(x) =

(
x2

1
x2

2

)
Then

K (x , x ′) = Φ(x)>Φ(x ′) = (x1)2(x ′1)2 + (x2)2(x ′2)2 .



The kernel tricks

φ
X F

2 tricks
1 Many linear algorithms (in particular linear SVM) can be

performed in the feature space of Φ(x) without explicitly computing
the images Φ(x), but instead by computing kernels K (x , x ′).

2 It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces: K (x , x ′)
is often much simpler to compute than Φ(x) and Φ(x ′)



Trick 1 : SVM in the original space

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj ,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyix>i x + b∗ .



Trick 1 : SVM in the feature space

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjΦ (xi)
>Φ

(
xj
)
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyiΦ (xi)
>Φ (x) + b∗ .



Trick 1 : SVM in the feature space with a kernel

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK
(
xi , xj

)
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyiK (xi , x) + b∗ .



Trick 2 illustration: polynomial kernel

2R

x1

x2

x1

x2

2

For x = (x1, x2)> ∈ R2, let Φ(x) = (x2
1 ,
√

2x1x2, x2
2 ) ∈ R3:

K (x , x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(

x>x ′
)2

.



Trick 2 illustration: polynomial kernel

2R

x1

x2

x1

x2

2

More generally, for x , x ′ ∈ Rp,

K (x , x ′) =
(

x>x ′ + 1
)d

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Combining tricks: learn a polynomial discrimination
rule with SVM

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj

(
x>i xj + 1

)d
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyi

(
x>i x + 1

)d
+ b∗ .



Illustration: toy nonlinear problem

> plot(x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))
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Illustration: toy nonlinear problem, linear SVM

> library(kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel=’vanilladot’)
> plot(svp,data=x)
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Illustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc", ...
kernel=polydot(degree=2))

> plot(svp,data=x)
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Which functions K (x , x ′) are kernels?

Definition
A function K (x , x ′) defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) H and a mapping

Φ : X 7→ H ,

such that, for any x , x ′ in X :

K
(
x , x ′

)
=
〈
Φ (x) ,Φ

(
x ′
)〉
H .

φ
X F



Positive Definite (p.d.) functions

Definition
A positive definite (p.d.) function on the set X is a function
K : X × X → R symmetric:

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= K

(
x′,x

)
,

and which satisfies, for all N ∈ N, (x1,x2, . . . ,xN) ∈ XN et
(a1,a2, . . . ,aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi ,xj

)
≥ 0.



Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.

φ
X F



Proof?

Kernel =⇒ p.d. function:
〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)Rd 〉 ,∑N

i=1
∑N

j=1 aiaj 〈Φ (xi ) ,Φ (xj )〉Rd = ‖
∑N

i=1 ai Φ (xi ) ‖2
Rd ≥ 0 .

P.d. function =⇒ kernel: more difficult...



Kernel examples

Polynomial (on Rd ):

K (x , x ′) = (x .x ′ + 1)d

Gaussian radial basis function (RBF) (on Rd )

K (x , x ′) = exp

(
−||x − x ′||2

2σ2

)
Laplace kernel (on R)

K (x , x ′) = exp
(
−γ|x − x ′|

)
Min kernel (on R+)

K (x , x ′) = min(x , x ′)

Exercice
Exercice: for each kernel, find a Hilbert space H and a mapping
Φ : X → H such that K (x , x ′) = 〈Φ(x),Φ(x ′)〉



Example: SVM with a Gaussian kernel

Training:

min
α∈Rn

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj exp

(
−
||~xi − ~xj ||2

2σ2

)

s.t. 0 ≤ αi ≤ C, and
n∑

i=1

αiyi = 0.

Prediction

f (~x) =
n∑

i=1

αi exp

(
−||

~x − ~xi ||2

2σ2

)



Example: SVM with a Gaussian kernel

f (~x) =
n∑

i=1

αi exp

(
−||

~x − ~xi ||2

2σ2

)
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Linear vs nonlinear SVM



Regularity vs data fitting trade-off



C controls the trade-off

min
f

{
1

margin(f )
+ C × errors(f )

}



Why it is important to control the trade-off



How to choose C in practice

Split your dataset in two ("train" and "test")
Train SVM with different C on the "train" set
Compute the accuracy of the SVM on the "test" set
Choose the C which minimizes the "test" error
(you may repeat this several times = cross-validation)
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Supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.



String kernels

The idea
Map each string x ∈ X to a vector Φ(x) ∈ F .
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...



Example: substring indexation

The approach
Index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)



Spectrum kernel (1/2)

Kernel definition
The 3-spectrum of

x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x,x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′
)
.



Spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most |x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (|x |+ |x′ |) with pre-indexation of the strings.
Fast classification of a sequence x in O (|x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1 .

Remarks
Work with any string (natural language, time series...)
Fast and scalable, a good default method for string classification.
Variants allow matching of k -mers up to m mismatches.



Local alignmnent kernel (Saigo et al., 2004)

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C,C) + S(L,L) + S(I, I) + S(A,V ) + 2S(M,M)

+ S(W ,W ) + S(F ,F ) + S(G,G) + S(V ,V )− g(3)− g(4)

SWS,g(x , y) := max
π∈Π(x ,y)

sS,g(π) is not a kernel

K (β)
LA (x , y) =

∑
π∈Π(x ,y)

exp
(
βsS,g (x , y , π)

)
is a kernel



LA kernel is p.d.: proof (1/2)

Definition: Convolution kernel (Haussler, 1999)
Let K1 and K2 be two p.d. kernels for strings. The convolution of K1
and K2, denoted K1 ? K2, is defined for any x,x′ ∈ X by:

K1 ? K2(x,y) :=
∑

x1x2=x,y1y2=y

K1(x1,y1)K2(x2,y2).

Lemma
If K1 and K2 are p.d. then K1 ? K2 is p.d..



LA kernel is p.d.: proof (2/2)

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0 ,

with
The constant kernel:

K0 (x,y) := 1 .

A kernel for letters:

K (β)
a (x,y) :=

{
0 if |x | 6= 1 where |y | 6= 1 ,
exp (βS(x,y)) otherwise .

A kernel for gaps:

K (β)
g (x,y) = exp [β (g (|x |) + g (|x |))] .



The choice of kernel matters
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Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).



Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).



Image retrieval and classification

From Harchaoui and Bach (2007).



Graph kernels

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

X



Graph kernels

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

φ
HX



Graph kernels

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

φ
HX



Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.



Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.



Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
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Indexing by specific subgraphs

Substructure selection
We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)
all path up to length k (Openeye fingerprint, Nicholls 2005)
all shortest paths (Borgwardt and Kriegel, 2005)
all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)
all frequent subgraphs in the database (Helma et al., 2004)



Example : Indexing by all shortest paths
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Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.
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Walks

Definition
A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . ,n − 1.
We noteWn(G) the set of walks with n vertices of the graph G,
andW(G) the set of all walks.

etc...



Walks 6= paths



Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .
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Walk kernel examples

The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).
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Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.



Product graph

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v
′
2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b



Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1,G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1,G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .



Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt (vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt (v , v ′):

Kwalk (G1,G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt (vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt )
−1 1

Computation in O(|G1|3|G2|3)



Extension: branching walks (Ramon and Gärtner,
2003; Mahé and Vert, 2009)
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T (v ,n + 1) =
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R⊂N (v)

∏
v ′∈R

λt (v , v ′)T (v ′,n) ,



2D Subtree vs walk kernels
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).
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SVM summary

Large margin classifier
Control of the regularization / data fitting trade-off with C
Linear or nonlinear (with the kernel trick)
Extension to strings, graphs... and many other
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