Support vector machines and applications in computational biology

Jean-Philippe Vert

Jean-Philippe.Vert@mines.org

Outline

(1) Motivations
(2) Linear SVM
(3) Nonlinear SVM and kernels

4 Kernels for strings and graphs
(5) Conclusion

Outline

(1) Motivations
(2) Linear SVM
(3) Nonlinear SVM and kernels
4. Kernels for strings and graphs
(5) Conclusion

Cancer diagnosis

Problem 1

Given the expression levels of 20 k genes in a leukemia, is it an acute lymphocytic or myeloid leukemia (ALL or AML)?

Cancer prognosis

Problem 2

Given the expression levels of 20k genes in a tumour after surgery, is it likely to relapse later?

Pharmacogenomics / Toxicogenomics

Problem 3

Given the genome of a person, which drug should we give?

Protein annotation

Data available

- Secreted proteins:

MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA. . .
MARSSLFTFLCLAVF INGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEP ITNETLGWL . . .

- Non-secreted proteins:

MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG . . . MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . . MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP . .

Problem 4

Given a newly sequenced protein, is it secreted or not?

Drug discovery

Problem 5

A common topic

A common topic

A common topic

A common topic

On real data...

Pattern recognition, aka supervised classification

Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

Outline

(1) Motivations
(2) Linear SVM
(3) Nonlinear SVM and kernels

4 Kernels for strings and graphs
(5) Conclusion

Linear classifier

Which one is better?

The margin of a linear classifier

Largest margin classifier (hard-margin SVM)

Support vectors

More formally

- The training set is a finite set of n data/class pairs:

$$
\mathcal{S}=\left\{\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)\right\}
$$

where $\vec{x}_{i} \in \mathbb{R}^{p}$ and $y_{i} \in\{-1,1\}$.

- We assume (for the moment) that the data are linearly separable, i.e., that there exists $(\vec{w}, b) \in \mathbb{R}^{p} \times \mathbb{R}$ such that:

$$
\begin{cases}\vec{w} \cdot \vec{x}_{i}+b>0 & \text { if } y_{i}=1 \\ \vec{w} \cdot \vec{x}_{i}+b<0 & \text { if } y_{i}=-1\end{cases}
$$

How to find the largest separating hyperplane?

For a given linear classifier $f(x)=\vec{w} \cdot \vec{x}+b$ consider the "tube" defined by the values -1 and +1 of the decision function:

The margin is $2 /\|\vec{w}\|$

Indeed, the points \vec{x}_{1} and $\overrightarrow{x_{2}}$ satisfy:

$$
\left\{\begin{array}{l}
\vec{w} \cdot \vec{x}_{1}+b=0 \\
\vec{w} \cdot \vec{x}_{2}+b=1
\end{array}\right.
$$

By subtracting we get $\vec{w} \cdot\left(\vec{x}_{2}-\vec{x}_{1}\right)=1$, and therefore:

$$
\gamma=2\left\|\vec{x}_{2}-\vec{x}_{1}\right\|=\frac{2}{\|\vec{w}\|}
$$

All training points should be on the correct side of the dotted line

For positive examples $\left(y_{i}=1\right)$ this means:

$$
\vec{w} \cdot \vec{x}_{i}+b \geq 1 .
$$

For negative examples $\left(y_{i}=-1\right)$ this means:

$$
\vec{w} \cdot \vec{x}_{i}+b \leq-1
$$

Both cases are summarized by:

$$
\forall i=1, \ldots, n, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geq 1
$$

Finding the optimal hyperplane

Find (\vec{w}, b) which minimize:

$$
\|\vec{w}\|^{2}
$$

under the constraints:

$$
\forall i=1, \ldots, n, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1 \geq 0
$$

This is a classical quadratic program on \mathbb{R}^{p+1}.

Lagrangian

In order to minimize:

$$
\frac{1}{2}\|\vec{w}\|_{2}^{2}
$$

under the constraints:

$$
\forall i=1, \ldots, n, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1 \geq 0
$$

we introduce one dual variable α_{i} for each constraint, i.e., for each training point. The Lagrangian is:

$$
L(\vec{w}, b, \vec{\alpha})=\frac{1}{2}\|\vec{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1\right) .
$$

Lagrangian

- $L(\vec{w}, b, \vec{\alpha})$ is convex quadratic in \vec{w}. It is minimized for:

$$
\nabla_{\vec{w}} L=\vec{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x}_{i}=0 \quad \Longrightarrow \quad \vec{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x}_{i}
$$

- $L(\vec{w}, b, \vec{\alpha})$ is affine in b. Its minimum is $-\infty$ except if:

$$
\nabla_{b} L=\sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

Dual function

- We therefore obtain the Lagrange dual function:

$$
\begin{aligned}
& q(\vec{\alpha})=\inf _{\vec{w} \in \mathbb{R}^{p}, b \in \mathbb{R}} L(\vec{w}, b, \vec{\alpha}) \\
& \quad= \begin{cases}\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} \vec{x}_{i} \cdot \vec{x}_{j} & \text { if } \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \\
-\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

- The dual problem is:

$$
\begin{array}{ll}
\text { maximize } & q(\vec{\alpha}) \\
\text { subject to } & \vec{\alpha} \geq 0
\end{array}
$$

Dual problem

Find $\alpha^{*} \in \mathbb{R}^{n}$ which maximizes

$$
L(\vec{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j},
$$

under the (simple) constraints $\alpha_{i} \geq 0$ (for $i=1, \ldots, n$), and

$$
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

This is a quadratic program on \mathbb{R}^{N}, with "box constraints". $\vec{\alpha}^{*}$ can be found efficiently using dedicated optimization softwares.

Recovering the optimal hyperplane

Once $\vec{\alpha}^{*}$ is found, we recover (\vec{w}^{*}, b^{*}) corresponding to the optimal hyperplane. w^{*} is given by:

$$
\vec{w}^{*}=\sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x}_{i},
$$

and the decision function is therefore:

$$
\begin{align*}
f^{*}(\vec{x}) & =\vec{w}^{*} \cdot \vec{x}+b^{*} \\
& =\sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x}_{i} \cdot \vec{x}+b^{*} . \tag{1}
\end{align*}
$$

Interpretation: support vectors

What if data are not linearly separable?

Soft-margin SVM

- Find a trade-off between large margin and few errors.
- Mathematically:

$$
\min _{f}\left\{\frac{1}{\operatorname{margin}(f)}+C \times \operatorname{errors}(f)\right\}
$$

- C is a parameter

Soft-margin SVM formulation

- The margin of a labeled point (\vec{x}, y) is

$$
\operatorname{margin}(\vec{x}, y)=y(\vec{w} \cdot \vec{x}+b)
$$

- The error is
- 0 if $\operatorname{margin}(\vec{x}, y)>1$,
- $1-\operatorname{margin}(\vec{x}, y)$ otherwise.
- The soft margin SVM solves:

$$
\min _{\overrightarrow{\vec{w}}, b}\left\{\|\vec{w}\|^{2}+C \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)\right)\right\}
$$

Soft-margin SVM and hinge loss

$$
\min _{\vec{w}, b}\left\{\sum_{i=1}^{n} \ell_{\text {hinge }}\left(\vec{w} \cdot x_{i}+b, y_{i}\right)+\lambda\|\vec{w}\|_{2}^{2}\right\}
$$

for $\lambda=1 / C$ and the hinge loss function:

$$
\ell_{\text {hinge }}(u, y)=\max (1-y u, 0)= \begin{cases}0 & \text { if } y u \geq 1 \\ 1-y u & \text { otherwise }\end{cases}
$$

Dual formulation of soft-margin SVM (exercice)

Maximize

$$
L(\vec{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j},
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

Interpretation: bounded and unbounded support vectors

Primal (for large n) vs dual (for large p) optimization

(1) Find $(\vec{w}, b) \in \mathbb{R}^{p+1}$ which solve:

$$
\min _{\overrightarrow{\vec{w}}, b}\left\{\sum_{i=1}^{n} \ell_{\text {hinge }}\left(\vec{w} \cdot x_{i}+b, y_{i}\right)+\lambda\|\vec{w}\|_{2}^{2}\right\} .
$$

(2) Find $\alpha^{*} \in \mathbb{R}^{n}$ which maximizes

$$
L(\vec{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j}
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

Outline

(1) Motivations
(2) Linear SVM
(3) Nonlinear SVM and kernels
4. Kernels for strings and graphs
(5) Conclusion

Sometimes linear methods are not interesting

Solution: nonlinear mapping to a feature space

For $x=\binom{x_{1}}{x_{2}}$ let $\Phi(x)=\binom{x_{1}^{2}}{x_{2}^{2}}$. The decision function is:

$$
f(x)=x_{1}^{2}+x_{2}^{2}-R^{2}=\binom{1}{1}^{\top}\binom{x_{1}^{2}}{x_{2}^{2}}-R^{2}=\beta^{\top} \Phi(x)+b
$$

Kernel = inner product in the feature space

Definition

For a given mapping

$$
\Phi: \mathcal{X} \mapsto \mathcal{H}
$$

from the space of objects \mathcal{X} to some Hilbert space of features \mathcal{H}, the kernel between two objects x and x^{\prime} is the inner product of their images in the features space:

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

Example

Let $\mathcal{X}=\mathcal{H}=\mathbb{R}^{2}$ and for $x=\binom{x_{1}}{x_{2}}$ let $\Phi(x)=\binom{x_{1}^{2}}{x_{2}^{2}}$
Then

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)=\left(x_{1}\right)^{2}\left(x_{1}^{\prime}\right)^{2}+\left(x_{2}\right)^{2}\left(x_{2}^{\prime}\right)^{2}
$$

The kernel tricks

2 tricks

(1) Many linear algorithms (in particular linear SVM) can be performed in the feature space of $\Phi(x)$ without explicitly computing the images $\Phi(x)$, but instead by computing kernels $K\left(x, x^{\prime}\right)$.
(2) It is sometimes possible to easily compute kernels which correspond to complex large-dimensional feature spaces: $K\left(x, x^{\prime}\right)$ is often much simpler to compute than $\Phi(x)$ and $\Phi\left(x^{\prime}\right)$

Trick 1 : SVM in the original space

- Train the SVM by maximizing

$$
\max _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

- Predict with the decision function

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{\top} x+b^{*}
$$

Trick 1: SVM in the feature space

- Train the SVM by maximizing

$$
\max _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \Phi\left(x_{i}\right)^{\top} \Phi\left(x_{j}\right),
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

- Predict with the decision function

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} \Phi\left(x_{i}\right)^{\top} \Phi(x)+b^{*}
$$

Trick 1 : SVM in the feature space with a kernel

- Train the SVM by maximizing

$$
\max _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

- Predict with the decision function

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(x_{i}, x\right)+b^{*}
$$

Trick 2 illustration: polynomial kernel

For $x=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}$, let $\Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \in \mathbb{R}^{3}$:

$$
\begin{aligned}
K\left(x, x^{\prime}\right) & =x_{1}^{2} x_{1}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+x_{2}^{2} x_{2}^{\prime 2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left(x^{\top} x^{\prime}\right)^{2} .
\end{aligned}
$$

Trick 2 illustration: polynomial kernel

More generally, for $x, x^{\prime} \in \mathbb{R}^{p}$,

$$
K\left(x, x^{\prime}\right)=\left(x^{\top} x^{\prime}+1\right)^{d}
$$

is an inner product in a feature space of all monomials of degree up to d (left as exercice.)

Combining tricks: learn a polynomial discrimination rule with SVM

- Train the SVM by maximizing

$$
\max _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i}^{\top} x_{j}+1\right)^{d}
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

- Predict with the decision function

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} y_{i}\left(x_{i}^{\top} x+1\right)^{d}+b^{*}
$$

Illustration: toy nonlinear problem

> plot (x,col=ifelse (y>0,1,2),pch=ifelse (y>0,1,2))

Training data

Illustration: toy nonlinear problem, linear SVM

> library(kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel='vanilladot')
> plot(svp,data=x)

SVM classification plot

Illustration: toy nonlinear problem, polynomial SVM

```
> svp <- ksvm(x,y,type="C-svc", ...
                        kernel=polydot (degree=2))
> plot(svp,data=x)
```

SVM classification plot

Which functions $K\left(x, x^{\prime}\right)$ are kernels?

Definition

A function $K\left(x, x^{\prime}\right)$ defined on a set \mathcal{X} is a kernel if and only if there exists a features space (Hilbert space) \mathcal{H} and a mapping

$$
\Phi: \mathcal{X} \mapsto \mathcal{H}
$$

such that, for any x, x^{\prime} in \mathcal{X} :

$$
K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set \mathcal{X} is a function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ symmetric:

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=K\left(\mathbf{x}^{\prime}, \mathbf{x}\right),
$$

and which satisfies, for all $N \in \mathbb{N},\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \in \mathcal{X}^{N}$ et $\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0
$$

Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.

Proof?

- Kernel \Longrightarrow p.d. function:
- $\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathbb{R}^{d}}=\left\langle\Phi\left(\mathbf{x}^{\prime}\right), \Phi(\mathbf{x})_{\mathbb{R}^{d}}\right\rangle$,
- $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j}\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathbb{R}^{d}}=\left\|\sum_{i=1}^{N} a_{i} \Phi\left(\mathbf{x}_{i}\right)\right\|_{\mathbb{R}^{d}}^{2} \geq 0$.
- P.d. function \Longrightarrow kernel: more difficult...

Kernel examples

- Polynomial $\left(o n \mathbb{R}^{d}\right)$:

$$
K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+1\right)^{d}
$$

- Gaussian radial basis function (RBF) (on $\left.\mathbb{R}^{d}\right)$

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Laplace kernel (on \mathbb{R})

$$
K\left(x, x^{\prime}\right)=\exp \left(-\gamma\left|x-x^{\prime}\right|\right)
$$

- Min kernel (on \mathbb{R}_{+})

$$
K\left(x, x^{\prime}\right)=\min \left(x, x^{\prime}\right)
$$

Exercice

Exercice: for each kernel, find a Hilbert space \mathcal{H} and a mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ such that $K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$

Example: SVM with a Gaussian kernel

- Training:

$$
\begin{array}{r}
\min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \exp \left(-\frac{\left\|\vec{x}_{i}-\vec{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right) \\
\text { s.t. } 0 \leq \alpha_{i} \leq C, \quad \text { and } \sum_{i=1}^{n} \alpha_{i} y_{i}=0 .
\end{array}
$$

- Prediction

$$
f(\vec{x})=\sum_{i=1}^{n} \alpha_{i} \exp \left(-\frac{\left\|\vec{x}-\vec{x}_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Example: SVM with a Gaussian kernel

$$
f(\vec{x})=\sum_{i=1}^{n} \alpha_{i} \exp \left(-\frac{\left\|\vec{x}-\vec{x}_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$

SVM classification plot

Linear vs nonlinear SVM

Regularity vs data fitting trade-off

C controls the trade-off

$$
\min _{f}\left\{\frac{1}{\operatorname{margin}(f)}+C \times \operatorname{errors}(f)\right\}
$$

- Large C :
- makes few errors

- Small C :
- ensure a large margin

- Intermediate C:
- finds a trade-off

Why it is important to control the trade-off

How to choose C in practice

- Split your dataset in two ("train" and "test")
- Train SVM with different C on the "train" set
- Compute the accuracy of the SVM on the "test" set
- Choose the C which minimizes the "test" error
- (you may repeat this several times = cross-validation)

Outline

(1) Motivations
(2) Linear SVM
(3) Nonlinear SVM and kernels

4 Kernels for strings and graphs
(5) Conclusion

Supervised sequence classification

Data (training)

- Secreted proteins:

MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA. . .
MARSSLFTFLCLAVF INGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEP ITNETLGWL . . .

- Non-secreted proteins:

MAPP SVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG . . . MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . . MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP . .

Goal

- Build a classifier to predict whether new proteins are secreted or not.

String kernels

The idea

- Map each string $x \in \mathcal{X}$ to a vector $\Phi(x) \in \mathcal{F}$.
- Train a classifier for vectors on the images $\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)$ of the training set (nearest neighbor, linear perceptron, logistic regression, support vector machine...)

Example: substring indexation

The approach

Index the feature space by fixed-length strings, i.e.,

$$
\Phi(\mathbf{x})=\left(\Phi_{u}(\mathbf{x})\right)_{u \in \mathcal{A}^{k}}
$$

where $\Phi_{u}(\mathbf{x})$ can be:

- the number of occurrences of u in \mathbf{x} (without gaps) : spectrum kernel (Leslie et al., 2002)
- the number of occurrences of u in \mathbf{x} up to m mismatches (without gaps) : mismatch kernel (Leslie et al., 2004)
- the number of occurrences of u in \mathbf{x} allowing gaps, with a weight decaying exponentially with the number of gaps: substring kernel (Lohdi et al., 2002)

Spectrum kernel (1/2)

Kernel definition

- The 3-spectrum of

$$
\mathbf{x}=\mathrm{CGGSLIAMMWFGV}
$$

is:
(CGG, GGS, GSL, SLI, LIA, IAM, AMM, MMW, MWF, WFG, FGV).

- Let $\Phi_{u}(\mathbf{x})$ denote the number of occurrences of u in \mathbf{x}. The k-spectrum kernel is:

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=\sum_{u \in \mathcal{A}^{k}} \Phi_{u}(\mathbf{x}) \Phi_{u}\left(\mathbf{x}^{\prime}\right)
$$

Spectrum kernel (2/2)

Implementation

- The computation of the kernel is formally a sum over $|\mathcal{A}|^{k}$ terms, but at most $|\mathbf{x}|-k+1$ terms are non-zero in $\Phi(\mathbf{x}) \Longrightarrow$ Computation in $O\left(|\mathbf{x}|+\left|\mathbf{x}^{\prime}\right|\right)$ with pre-indexation of the strings.
- Fast classification of a sequence \mathbf{x} in $O(|\mathbf{x}|)$:

$$
f(\mathbf{x})=\mathbf{w} \cdot \Phi(\mathbf{x})=\sum_{u} w_{u} \Phi_{u}(\mathbf{x})=\sum_{i=1}^{|\mathbf{x}|-k+1} w_{x_{i} \ldots x_{i+k-1}} .
$$

Remarks

- Work with any string (natural language, time series...)
- Fast and scalable, a good default method for string classification.
- Variants allow matching of k-mers up to m mismatches.

Local alignmnent kernel (Saigo et al., 2004)

CGGSLIAMM----WFGV

|...|||||....||||
C---LIVMMNRLMWFGV

$$
\begin{aligned}
s_{S, g}(\pi)= & S(C, C)+S(L, L)+S(I, I)+S(A, V)+2 S(M, M) \\
& +S(W, W)+S(F, F)+S(G, G)+S(V, V)-g(3)-g(4)
\end{aligned}
$$

$S W_{S, g}(x, y):=\max _{\pi \in \Pi(x, y)} s_{S, g}(\pi)$ is not a kernel
$K_{L A}^{(\beta)}(x, y)=\sum_{\pi \in \Pi(x, y)} \exp \left(\beta s_{S, g}(x, y, \pi)\right) \quad$ is a kernel

LA kernel is p.d.: proof (1/2)

Definition: Convolution kernel (Haussler, 1999)

Let K_{1} and K_{2} be two p.d. kernels for strings. The convolution of K_{1} and K_{2}, denoted $K_{1} \star K_{2}$, is defined for any $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}$ by:

$$
K_{1} \star K_{2}(\mathbf{x}, \mathbf{y}):=\sum_{\mathbf{x}_{1} \mathbf{x}_{2}=\mathbf{x}, \mathbf{y}_{1} \mathbf{y}_{2}=\mathbf{y}} K_{1}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) K_{2}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)
$$

Lemma

If K_{1} and K_{2} are p.d. then $K_{1} \star K_{2}$ is p.d..

LA kernel is p.d.: proof (2/2)

$$
K_{L A}^{(\beta)}=\sum_{n=0}^{\infty} K_{0} \star\left(K_{a}^{(\beta)} \star K_{g}^{(\beta)}\right)^{(n-1)} \star K_{a}^{(\beta)} \star K_{0},
$$

with

- The constant kernel:

$$
K_{0}(\mathbf{x}, \mathbf{y}):=1
$$

- A kernel for letters:

$$
K_{a}^{(\beta)}(\mathbf{x}, \mathbf{y}):= \begin{cases}0 & \text { if }|\mathbf{x}| \neq 1 \text { where }|\mathbf{y}| \neq 1 \\ \exp (\beta S(\mathbf{x}, \mathbf{y})) & \text { otherwise } .\end{cases}
$$

- A kernel for gaps:

$$
K_{g}^{(\beta)}(\mathbf{x}, \mathbf{y})=\exp [\beta(g(|\mathbf{x}|)+g(|\mathbf{x}|))]
$$

The choice of kernel matters

Performance on the SCOP superfamily recognition benchmark (from Saigo et al., 2004).

Virtual screening for drug discovery

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Image retrieval and classification

From Harchaoui and Bach (2007).

Graph kernels

(1) Represent each graph x by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

(2) Use a linear method for classification in \mathcal{H}.

Graph kernels

(1) Represent each graph x by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

(3) Use a linear method for classification in \mathcal{H}.

Graph kernels

(1) Represent each graph x by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

(2) Use a linear method for classification in \mathcal{H}.

Indexing by all subgraphs?

$$
\begin{aligned}
(B-A) \\
(A-A)(0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots) \\
(A-A)
\end{aligned}
$$

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size n is a subgraph of a graph X with n vertices iff X has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size n is a subgraph of a graph X with n vertices iff X has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof.

- The linear graph of size n is a subgraph of a graph X with n vertices iff X has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.

Indexing by specific subgraphs

Substructure selection

We can imagine more limited sets of substuctures that lead to more computationnally efficient indexing (non-exhaustive list)

- substructures selected by domain knowledge (MDL fingerprint)
- all path up to length k (Openeye fingerprint, Nicholls 2005)
- all shortest paths (Borgwardt and Kriegel, 2005)
- all subgraphs up to k vertices (graphlet kernel, Sherashidze et al., 2009)
- all frequent subgraphs in the database (Helma et al., 2004)

Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

- There are $O\left(n^{2}\right)$ shortest naths
- The vector of counts can be computed in $O\left(n^{4}\right)$ with the Floyd-Warshall algorithm.

Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

- There are $O\left(n^{2}\right)$ shortest paths.
- The vector of counts can be computed in $O\left(n^{4}\right)$ with the Floyd-Warshall algorithm.

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

- Naive enumeration scales as $O\left(n^{k}\right)$.
- Enumeration of connected graphlets in $O\left(n d^{k-1}\right)$ for graphs with degree $\leq d$ and $k \leq 5$.
- Randomly sample subgraphs if enumeration is infeasible.

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

- Naive enumeration scales as $O\left(n^{k}\right)$.
- Enumeration of connected graphlets in $O\left(n d^{k-1}\right)$ for graphs with degree $\leq d$ and $k \leq 5$.
- Randomly sample subgraphs if enumeration is infeasible.

Walks

Definition

- A walk of a graph (V, E) is sequence of $v_{1}, \ldots, v_{n} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1, \ldots, n-1$.
- We note $\mathcal{W}_{n}(G)$ the set of walks with n vertices of the graph G, and $\mathcal{W}(G)$ the set of all walks.

Walks \neq paths

Walk kernel

Definition

- Let \mathcal{S}_{n} denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$.
- For any graph \mathcal{X} let a weight $\lambda_{G}(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G)=\left(\Phi_{s}(G)\right)_{s \in \mathcal{S}}$ be defined by:

$$
\Phi_{s}(G)=\sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) 1(s \text { is the label sequence of } w) .
$$

- A walk kernel is a graph kernel defined by:

Walk kernel

Definition

- Let \mathcal{S}_{n} denote the set of all possible label sequences of walks of length n (including vertices and edges labels), and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$.
- For any graph \mathcal{X} let a weight $\lambda_{G}(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G)=\left(\Phi_{s}(G)\right)_{s \in \mathcal{S}}$ be defined by:

$$
\Phi_{s}(G)=\sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) \mathbf{1}(s \text { is the label sequence of } w)
$$

- A walk kernel is a graph kernel defined by:

$$
K_{\text {walk }}\left(G_{1}, G_{2}\right)=\sum_{s \in \mathcal{S}} \Phi_{s}\left(G_{1}\right) \Phi_{s}\left(G_{2}\right)
$$

Walk kernel examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\operatorname{label}\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right)
$$

where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

- The geometric walk kernel is obtained (when it converges) with $\lambda_{G}(w)=\beta^{\operatorname{length}(w)}$, for $\beta>0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Walk kernel examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\text { label }\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right),
$$

where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

Walk kernel examples

- The n th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of w is $n, 0$ otherwise. It compares two graphs through their common walks of length n.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where P_{G} is a Markov random walk on G. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\operatorname{label}\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right)
$$

where W_{1} and W_{2} are two independant random walks on G_{1} and G_{2}, respectively (Kashima et al., 2003).

- The geometric walk kernel is obtained (when it converges) with $\lambda_{G}(w)=\beta^{\text {length }(w)}$, for $\beta>0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).

Computation of walk kernels

Proposition

These three kernels (n th-order, random and geometric walk kernels) can be computed efficiently in polynomial time.

Product graph

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with labeled vertices. The product graph $G=G_{1} \times G_{2}$ is the graph $G=(V, E)$ with:
(1) $V=\left\{\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}: v_{1}\right.$ and v_{2} have the same label $\}$,
(2) $E=$

$$
\left\{\left(\left(v_{1}, v_{2}\right),\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in V \times V:\left(v_{1}, v_{1}^{\prime}\right) \in E_{1} \text { and }\left(v_{2}, v_{2}^{\prime}\right) \in E_{2}\right\} .
$$

G1

G2

G1 \times G2

Walk kernel and product graph

Lemma

There is a bijection between:
(1) The pairs of walks $w_{1} \in \mathcal{W}_{n}\left(G_{1}\right)$ and $w_{2} \in \mathcal{W}_{n}\left(G_{2}\right)$ with the same label sequences,
(2) The walks on the product graph $w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)$.

Corollary

$$
\lambda_{G_{1}}\left(w_{1}\right) \lambda_{G_{2}}\left(w_{2}\right) 1\left(l\left(w_{1}\right)=I\left(w_{2}\right)\right)
$$

Walk kernel and product graph

Lemma

There is a bijection between:
(1) The pairs of walks $w_{1} \in \mathcal{W}_{n}\left(G_{1}\right)$ and $w_{2} \in \mathcal{W}_{n}\left(G_{2}\right)$ with the same label sequences,
(2) The walks on the product graph $w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)$.

Corollary

$$
\begin{aligned}
K_{w a l k}\left(G_{1}, G_{2}\right) & =\sum_{s \in \mathcal{S}} \Phi_{s}\left(G_{1}\right) \Phi_{s}\left(G_{2}\right) \\
& =\sum_{\left(w_{1}, w_{2}\right) \in \mathcal{W}\left(G_{1}\right) \times \mathcal{W}\left(G_{1}\right)} \lambda_{G_{1}}\left(w_{1}\right) \lambda_{G_{2}}\left(w_{2}\right) 1\left(l\left(w_{1}\right)=I\left(w_{2}\right)\right) \\
& =\sum_{w \in \mathcal{W}\left(G_{1} \times G_{2}\right)} \lambda_{G_{1} \times G_{2}}(w) .
\end{aligned}
$$

Computation of the nth-order walk kernel

- For the n th-order walk kernel we have $\lambda_{G_{1} \times G_{2}}(w)=1$ if the length of w is $n, 0$ otherwise.
- Therefore:

$$
K_{\text {nth-order }}\left(G_{1}, G_{2}\right)=\sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)} 1 .
$$

- Let A be the adjacency matrix of $G_{1} \times G_{2}$. Then we get:

$$
K_{\text {nth-order }}\left(G_{1}, G_{2}\right)=\sum_{i, j}\left[A^{n}\right]_{i, j}=1^{\top} A^{n} 1
$$

- Computation in $O\left(n\left|G_{1}\right|\left|G_{2}\right| d_{1} d_{2}\right)$, where d_{i} is the maximum degree of G_{i}.

Computation of random and geometric walk kernels

- In both cases $\lambda_{G}(w)$ for a walk $w=v_{1} \ldots v_{n}$ can be decomposed as:

$$
\lambda_{G}\left(v_{1} \ldots v_{n}\right)=\lambda^{i}\left(v_{1}\right) \prod_{i=2}^{n} \lambda^{t}\left(v_{i-1}, v_{i}\right)
$$

- Let Λ_{i} be the vector of $\lambda^{i}(v)$ and Λ_{t} be the matrix of $\lambda^{t}\left(v, v^{\prime}\right)$:

$$
\begin{aligned}
K_{\text {walk }}\left(G_{1}, G_{2}\right) & =\sum_{n=1}^{\infty} \sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)} \lambda^{i}\left(v_{1}\right) \prod_{i=2}^{n} \lambda^{t}\left(v_{i-1}, v_{i}\right) \\
& =\sum_{n=0}^{\infty} \Lambda_{i} \Lambda_{t}^{n} \mathbf{1} \\
& =\Lambda_{i}\left(I-\Lambda_{t}\right)^{-1} \mathbf{1}
\end{aligned}
$$

- Computation in $O\left(\left|G_{1}\right|^{3}\left|G_{2}\right|^{3}\right)$

Extension: branching walks (Ramon and Gärtner, 2003; Mahé and Vert, 2009)

$$
\mathcal{T}(v, n+1)=\sum_{R \subset \mathcal{N}(v)} \prod_{v^{\prime} \in R} \lambda_{t}\left(v, v^{\prime}\right) \mathcal{T}\left(v^{\prime}, n\right),
$$

2D Subtree vs walk kernels

Screening of inhibitors for 60 cancer cell lines.

Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

- 1400 natural images in 14 classes
- Compare kernel between histograms (H), walk kernel (W), subtree kernel (TW), weighted subtree kernel (wTW), and a combination (M).

Outline

(1) Motivations
(2) Linear SVM
(3) Nonlinear SVM and kernels

4 Kernels for strings and graphs
(5) Conclusion

SVM summary

- Large margin classifier
- Control of the regularization / data fitting trade-off with C
- Linear or nonlinear (with the kernel trick)
- Extension to strings, graphs... and many other

References

N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337-404, 1950. URL http://www.jstor.org/stable/1990404.
K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In ICDM '05: Proceedings of the Fifth IEEE International Conference on Data Mining, pages 74-81, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2278-5. doi: http://dx.doi.org/10.1109/ICDM.2005.132.
Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), pages 1-8. IEEE Computer Society, 2007. doi: 10.1109/CVPR.2007.383049. URL http://dx.doi.org/10.1109/CVPR.2007.383049.
D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz, 1999.
C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. J. Chem. Inf. Comput. Sci., 44(4):1402-11, 2004. doi: 10.1021/ci034254q. URL http://dx.doi.org/10.1021/ci034254q.
C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences. J. Mach. Learn. Res., 5:1435-1455, 2004.
C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for SVM protein classification. In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauerdale, and T. E. Klein, editors, Proceedings of the Pacific Symposium on Biocomputing 2002, pages 564-575, Singapore, 2002. World Scientific.

References (cont.)

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. n. p. v. d. d. r. Watkins. Text classification using string kernels. J. Mach. Learn. Res., 2:419-444, 2002. URL http: //www.ai.mit.edu/projects/jmlr/papers/volume2/lodhi02a/abstract.html.
P. Mahé and J. P. Vert. Graph kernels based on tree patterns for molecules. Mach. Learn., 75(1): 3-35, 2009. doi: 10.1007/s10994-008-5086-2. URL http://dx.doi.org/10.1007/s10994-008-5086-2.
A. Nicholls. Oechem, version 1.3.4, openeye scientific software. website, 2005.
J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In T. Washio and L. De Raedt, editors, Proceedings of the First International Workshop on Mining Graphs, Trees and Sequences, pages 65-74, 2003.
H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string alignment kernels. Bioinformatics, 20(11):1682-1689, 2004. URL http: //bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682.
N. Sherashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient graphlet kernels for large graph comparison. In 12th International Conference on Artificial Intelligence and Statistics (AISTATS), pages 488-495, Clearwater Beach, Florida USA, 2009. Society for Artificial Intelligence and Statistics.

