
Support vector machines and applications in
computational biology

Jean-Philippe Vert
Jean-Philippe.Vert@mines.org

Outline

1 Motivations

2 Linear SVM

3 Nonlinear SVM and kernels

4 Kernels for strings and graphs

5 Conclusion

Outline

1 Motivations

2 Linear SVM

3 Nonlinear SVM and kernels

4 Kernels for strings and graphs

5 Conclusion

Cancer diagnosis

Problem 1
Given the expression levels of 20k genes in a leukemia, is it an acute
lymphocytic or myeloid leukemia (ALL or AML)?

Cancer prognosis

Problem 2
Given the expression levels of 20k genes in a tumour after surgery, is it
likely to relapse later?

Pharmacogenomics / Toxicogenomics

Problem 3
Given the genome of a person, which drug should we give?

Protein annotation

Data available
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Problem 4
Given a newly sequenced protein, is it secreted or not?

Drug discovery

inactive

active

active

active

inactive

inactive

Problem 5
Given a new candidate molecule, is it likely to be active?

A common topic

A common topic

A common topic

A common topic

On real data...

Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models

Outline

1 Motivations

2 Linear SVM

3 Nonlinear SVM and kernels

4 Kernels for strings and graphs

5 Conclusion

Linear classifier

Linear classifier

Linear classifier

Linear classifier

Linear classifier

Linear classifier

Linear classifier

Linear classifier

Which one is better?

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

The margin of a linear classifier

Largest margin classifier (hard-margin SVM)

Support vectors

More formally

The training set is a finite set of n data/class pairs:

S =
{

(~x1, y1), . . . , (~xn, yn)
}
,

where ~xi ∈ Rp and yi ∈ {−1,1}.
We assume (for the moment) that the data are linearly separable,
i.e., that there exists (~w ,b) ∈ Rp × R such that:{

~w .~xi + b > 0 if yi = 1 ,
~w .~xi + b < 0 if yi = −1 .

How to find the largest separating hyperplane?

For a given linear classifier f (x) = ~w .~x + b consider the "tube" defined
by the values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0

The margin is 2/‖ ~w ‖

Indeed, the points ~x1 and ~x2 satisfy:{
~w .~x1 + b = 0 ,
~w .~x2 + b = 1 .

By subtracting we get ~w .(~x2 − ~x1) = 1, and therefore:

γ = 2‖~x2 − ~x1 ‖ =
2
‖ ~w ‖

.

All training points should be on the correct side of the
dotted line

For positive examples (yi = 1) this means:

~w .~xi + b ≥ 1 .

For negative examples (yi = −1) this means:

~w .~xi + b ≤ −1 .

Both cases are summarized by:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
≥ 1 .

Finding the optimal hyperplane

Find (~w ,b) which minimize:
‖ ~w ‖2

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 .

This is a classical quadratic program on Rp+1.

Lagrangian

In order to minimize:
1
2
‖ ~w ‖22

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 ,

we introduce one dual variable αi for each constraint, i.e., for each
training point. The Lagrangian is:

L
(
~w ,b, ~α

)
=

1
2
||~w ||2 −

n∑
i=1

αi
(
yi
(
~w .~xi + b

)
− 1
)
.

Lagrangian

L
(
~w ,b, ~α

)
is convex quadratic in ~w . It is minimized for:

∇~wL = ~w −
n∑

i=1

αiyi~xi = 0 =⇒ ~w =
n∑

i=1

αiyi~xi .

L
(
~w ,b, ~α

)
is affine in b. Its minimum is −∞ except if:

∇bL =
n∑

i=1

αiyi = 0 .

Dual function

We therefore obtain the Lagrange dual function:

q (~α) = inf
~w∈Rp,b∈R

L
(
~w ,b, ~α

)
=

{∑n
i=1 αi − 1

2
∑n

i=1
∑n

j=1 yiyjαiαj~xi .~xj if
∑n

i=1 αiyi = 0 ,
−∞ otherwise.

The dual problem is:

maximize q (~α)

subject to ~α ≥ 0 .

Dual problem

Find α∗ ∈ Rn which maximizes

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . ,n), and

n∑
i=1

αiyi = 0.

This is a quadratic program on RN , with "box constraints". ~α∗ can be
found efficiently using dedicated optimization softwares.

Recovering the optimal hyperplane

Once ~α∗ is found, we recover (~w∗,b∗) corresponding to the optimal
hyperplane. w∗ is given by:

~w∗ =
n∑

i=1

αiyi~xi ,

and the decision function is therefore:

f ∗(~x) = ~w∗.~x + b∗

=
n∑

i=1

αiyi~xi .~x + b∗ .
(1)

Interpretation: support vectors

α>0

α=0

What if data are not linearly separable?

What if data are not linearly separable?

What if data are not linearly separable?

What if data are not linearly separable?

Soft-margin SVM

Find a trade-off between large margin and few errors.
Mathematically:

min
f

{
1

margin(f)
+ C × errors(f)

}
C is a parameter

Soft-margin SVM formulation

The margin of a labeled point (~x , y) is

margin(~x , y) = y
(
~w .~x + b

)
The error is

0 if margin(~x , y) > 1,
1−margin(~x , y) otherwise.

The soft margin SVM solves:

min
~w ,b

{
||~w ||2 + C

n∑
i=1

max
(
0,1− yi

(
~w .~xi + b

))}

Soft-margin SVM and hinge loss

min
~w ,b

{
n∑

i=1

`hinge
(
~w .xi + b, yi

)
+ λ‖ ~w ‖22

}
,

for λ = 1/C and the hinge loss function:

`hinge(u, y) = max (1− yu,0) =

{
0 if yu ≥ 1,
1− yu otherwise.

yf(x)

l(f(x),y)

1

Dual formulation of soft-margin SVM (exercice)

Maximize

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . ,n∑n

i=1 αiyi = 0.

Interpretation: bounded and unbounded support
vectors

C

α=0

0<α<C

α=

Primal (for large n) vs dual (for large p) optimization

1 Find (~w ,b) ∈ Rp+1 which solve:

min
~w ,b

{
n∑

i=1

`hinge
(
~w .xi + b, yi

)
+ λ‖ ~w ‖22

}
.

2 Find α∗ ∈ Rn which maximizes

L(~α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj~xi .~xj ,

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . ,n∑n

i=1 αiyi = 0.

Outline

1 Motivations

2 Linear SVM

3 Nonlinear SVM and kernels

4 Kernels for strings and graphs

5 Conclusion

Sometimes linear methods are not interesting

Solution: nonlinear mapping to a feature space

2R

x1

x2

x1

x2

2

For x =

(
x1
x2

)
let Φ(x) =

(
x2

1
x2

2

)
. The decision function is:

f (x) = x2
1 + x2

2 − R2 =

(
1
1

)>(x2
1

x2
2

)
− R2 = β>Φ(x) + b .

Kernel = inner product in the feature space

Definition
For a given mapping

Φ : X 7→ H

from the space of objects X to some Hilbert space of features H, the
kernel between two objects x and x ′ is the inner product of their
images in the features space:

∀x , x ′ ∈ X , K (x , x ′) = Φ(x)>Φ(x ′) .

φ
X F

Example

φ
X F

Let X = H = R2 and for x =

(
x1
x2

)
let Φ(x) =

(
x2

1
x2

2

)
Then

K (x , x ′) = Φ(x)>Φ(x ′) = (x1)2(x ′1)2 + (x2)2(x ′2)2 .

The kernel tricks

φ
X F

2 tricks
1 Many linear algorithms (in particular linear SVM) can be

performed in the feature space of Φ(x) without explicitly computing
the images Φ(x), but instead by computing kernels K (x , x ′).

2 It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces: K (x , x ′)
is often much simpler to compute than Φ(x) and Φ(x ′)

Trick 1 : SVM in the original space

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj ,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyix>i x + b∗ .

Trick 1 : SVM in the feature space

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjΦ (xi)
>Φ

(
xj
)
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyiΦ (xi)
>Φ (x) + b∗ .

Trick 1 : SVM in the feature space with a kernel

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK
(
xi , xj

)
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyiK (xi , x) + b∗ .

Trick 2 illustration: polynomial kernel

2R

x1

x2

x1

x2

2

For x = (x1, x2)> ∈ R2, let Φ(x) = (x2
1 ,
√

2x1x2, x2
2) ∈ R3:

K (x , x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(

x>x ′
)2

.

Trick 2 illustration: polynomial kernel

2R

x1

x2

x1

x2

2

More generally, for x , x ′ ∈ Rp,

K (x , x ′) =
(

x>x ′ + 1
)d

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)

Combining tricks: learn a polynomial discrimination
rule with SVM

Train the SVM by maximizing

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj

(
x>i xj + 1

)d
,

under the constraints:{
0 ≤ αi ≤ C , for i = 1, . . . ,n∑n

i=1 αiyi = 0 .

Predict with the decision function

f (x) =
n∑

i=1

αiyi

(
x>i x + 1

)d
+ b∗ .

Illustration: toy nonlinear problem

> plot(x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

● ●

●

● ●

●●

●

●●

●

●

●

●

●

−1 0 1 2 3

−
1

0
1

2
3

4

Training data

x1

x2

Illustration: toy nonlinear problem, linear SVM

> library(kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel=’vanilladot’)
> plot(svp,data=x)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−1 0 1 2 3 4

−1

0

1

2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

SVM classification plot

x2

x1

Illustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc", ...
kernel=polydot(degree=2))

> plot(svp,data=x)

−5

0

5

10

−1 0 1 2 3 4

−1

0

1

2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

SVM classification plot

x2

x1

Which functions K (x , x ′) are kernels?

Definition
A function K (x , x ′) defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) H and a mapping

Φ : X 7→ H ,

such that, for any x , x ′ in X :

K
(
x , x ′

)
=
〈
Φ (x) ,Φ

(
x ′
)〉
H .

φ
X F

Positive Definite (p.d.) functions

Definition
A positive definite (p.d.) function on the set X is a function
K : X × X → R symmetric:

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= K

(
x′,x

)
,

and which satisfies, for all N ∈ N, (x1,x2, . . . ,xN) ∈ XN et
(a1,a2, . . . ,aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi ,xj

)
≥ 0.

Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.

φ
X F

Proof?

Kernel =⇒ p.d. function:
〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)Rd 〉 ,∑N

i=1
∑N

j=1 aiaj 〈Φ (xi) ,Φ (xj)〉Rd = ‖
∑N

i=1 ai Φ (xi) ‖2
Rd ≥ 0 .

P.d. function =⇒ kernel: more difficult...

Kernel examples

Polynomial (on Rd):

K (x , x ′) = (x .x ′ + 1)d

Gaussian radial basis function (RBF) (on Rd)

K (x , x ′) = exp

(
−||x − x ′||2

2σ2

)
Laplace kernel (on R)

K (x , x ′) = exp
(
−γ|x − x ′|

)
Min kernel (on R+)

K (x , x ′) = min(x , x ′)

Exercice
Exercice: for each kernel, find a Hilbert space H and a mapping
Φ : X → H such that K (x , x ′) = 〈Φ(x),Φ(x ′)〉

Example: SVM with a Gaussian kernel

Training:

min
α∈Rn

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj exp

(
−
||~xi − ~xj ||2

2σ2

)

s.t. 0 ≤ αi ≤ C, and
n∑

i=1

αiyi = 0.

Prediction

f (~x) =
n∑

i=1

αi exp

(
−||

~x − ~xi ||2

2σ2

)

Example: SVM with a Gaussian kernel

f (~x) =
n∑

i=1

αi exp

(
−||

~x − ~xi ||2

2σ2

)

−1.0

−0.5

0.0

0.5

1.0

−2 0 2 4 6

−2

0

2

4

●

●

●

●

●

●

●

●
●

●

●

●

SVM classification plot

Linear vs nonlinear SVM

Regularity vs data fitting trade-off

C controls the trade-off

min
f

{
1

margin(f)
+ C × errors(f)

}

Why it is important to control the trade-off

How to choose C in practice

Split your dataset in two ("train" and "test")
Train SVM with different C on the "train" set
Compute the accuracy of the SVM on the "test" set
Choose the C which minimizes the "test" error
(you may repeat this several times = cross-validation)

Outline

1 Motivations

2 Linear SVM

3 Nonlinear SVM and kernels

4 Kernels for strings and graphs

5 Conclusion

Supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.

String kernels

The idea
Map each string x ∈ X to a vector Φ(x) ∈ F .
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

Example: substring indexation

The approach
Index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)

Spectrum kernel (1/2)

Kernel definition
The 3-spectrum of

x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x,x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′
)
.

Spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most |x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (|x |+ |x′ |) with pre-indexation of the strings.
Fast classification of a sequence x in O (|x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1 .

Remarks
Work with any string (natural language, time series...)
Fast and scalable, a good default method for string classification.
Variants allow matching of k -mers up to m mismatches.

Local alignmnent kernel (Saigo et al., 2004)

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C,C) + S(L,L) + S(I, I) + S(A,V) + 2S(M,M)

+ S(W ,W) + S(F ,F) + S(G,G) + S(V ,V)− g(3)− g(4)

SWS,g(x , y) := max
π∈Π(x ,y)

sS,g(π) is not a kernel

K (β)
LA (x , y) =

∑
π∈Π(x ,y)

exp
(
βsS,g (x , y , π)

)
is a kernel

LA kernel is p.d.: proof (1/2)

Definition: Convolution kernel (Haussler, 1999)
Let K1 and K2 be two p.d. kernels for strings. The convolution of K1
and K2, denoted K1 ? K2, is defined for any x,x′ ∈ X by:

K1 ? K2(x,y) :=
∑

x1x2=x,y1y2=y

K1(x1,y1)K2(x2,y2).

Lemma
If K1 and K2 are p.d. then K1 ? K2 is p.d..

LA kernel is p.d.: proof (2/2)

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0 ,

with
The constant kernel:

K0 (x,y) := 1 .

A kernel for letters:

K (β)
a (x,y) :=

{
0 if |x | 6= 1 where |y | 6= 1 ,
exp (βS(x,y)) otherwise .

A kernel for gaps:

K (β)
g (x,y) = exp [β (g (|x |) + g (|x |))] .

The choice of kernel matters

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC50

SVM-LA
SVM-pairwise

SVM-Mismatch
SVM-Fisher

Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).

Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Image retrieval and classification

From Harchaoui and Bach (2007).

Graph kernels

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

X

Graph kernels

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

φ
HX

Graph kernels

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

φ
HX

Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Indexing by specific subgraphs

Substructure selection
We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)
all path up to length k (Openeye fingerprint, Nicholls 2005)
all shortest paths (Borgwardt and Kriegel, 2005)
all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)
all frequent subgraphs in the database (Helma et al., 2004)

Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.

Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.

Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.

Walks

Definition
A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . ,n − 1.
We noteWn(G) the set of walks with n vertices of the graph G,
andW(G) the set of all walks.

etc...

Walks 6= paths

Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Walk kernel examples

The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Walk kernel examples

The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Walk kernel examples

The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.

Product graph

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v
′
2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b

Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .

Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .

Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1,G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1,G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .

Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt (vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt (v , v ′):

Kwalk (G1,G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt (vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt)
−1 1

Computation in O(|G1|3|G2|3)

Extension: branching walks (Ramon and Gärtner,
2003; Mahé and Vert, 2009)

.

.

.

.

.

.

.

.

.
N

N

C

CO

C

.

.

. C

O

C

N

C

N O

C

N CN C C

N

N

T (v ,n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt (v , v ′)T (v ′,n) ,

2D Subtree vs walk kernels

70
72

74
76

78
80

A
U

C

Walks
Subtrees

C
C

R
F

−
C

E
M

H
L−

60
(T

B
)

K
−

56
2

M
O

LT
−

4
R

P
M

I−
82

26 S
R

A
54

9/
A

T
C

C
E

K
V

X
H

O
P

−
62

H
O

P
−

92
N

C
I−

H
22

6
N

C
I−

H
23

N
C

I−
H

32
2M

N
C

I−
H

46
0

N
C

I−
H

52
2

C
O

LO
_2

05
H

C
C

−
29

98
H

C
T

−
11

6
H

C
T

−
15

H
T

29
K

M
12

S
W

−
62

0
S

F
−

26
8

S
F

−
29

5
S

F
−

53
9

S
N

B
−

19
S

N
B

−
75

U
25

1
LO

X
_I

M
V

I
M

A
LM

E
−

3M M
14

S
K

−
M

E
L−

2
S

K
−

M
E

L−
28

S
K

−
M

E
L−

5
U

A
C

C
−

25
7

U
A

C
C

−
62

IG
R

−
O

V
1

O
V

C
A

R
−

3
O

V
C

A
R

−
4

O
V

C
A

R
−

5
O

V
C

A
R

−
8

S
K

−
O

V
−

3
78

6−
0

A
49

8
A

C
H

N
C

A
K

I−
1

R
X

F
_3

93
S

N
12

C
T

K
−

10
U

O
−

31
P

C
−

3
D

U
−

14
5

M
C

F
7

N
C

I/A
D

R
−

R
E

S
M

D
A

−
M

B
−

23
1/

A
T

C
C

H
S

_5
78

T
M

D
A

−
M

B
−

43
5

M
D

A
−

N
B

T
−

54
9

T
−

47
D

Screening of inhibitors for 60 cancer cell lines.

Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
es

t e
rr

or

Kernels

Performance comparison on Corel14

Outline

1 Motivations

2 Linear SVM

3 Nonlinear SVM and kernels

4 Kernels for strings and graphs

5 Conclusion

SVM summary

Large margin classifier
Control of the regularization / data fitting trade-off with C
Linear or nonlinear (with the kernel trick)
Extension to strings, graphs... and many other

References

N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337 – 404, 1950. URL
http://www.jstor.org/stable/1990404.

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In ICDM ’05: Proceedings
of the Fifth IEEE International Conference on Data Mining, pages 74–81, Washington, DC,
USA, 2005. IEEE Computer Society. ISBN 0-7695-2278-5. doi:
http://dx.doi.org/10.1109/ICDM.2005.132.

Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In 2007 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007),
pages 1–8. IEEE Computer Society, 2007. doi: 10.1109/CVPR.2007.383049. URL
http://dx.doi.org/10.1109/CVPR.2007.383049.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC
Santa Cruz, 1999.

C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data mining and machine learning techniques
for the identification of mutagenicity inducing substructures and structure activity relationships
of noncongeneric compounds. J. Chem. Inf. Comput. Sci., 44(4):1402–11, 2004. doi:
10.1021/ci034254q. URL http://dx.doi.org/10.1021/ci034254q.

C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences. J.
Mach. Learn. Res., 5:1435–1455, 2004.

C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for SVM protein
classification. In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauerdale, and T. E. Klein, editors,
Proceedings of the Pacific Symposium on Biocomputing 2002, pages 564–575, Singapore,
2002. World Scientific.

http://www.jstor.org/stable/1990404
http://dx.doi.org/10.1109/CVPR.2007.383049
http://dx.doi.org/10.1021/ci034254q

References (cont.)

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. n. p. v. d. d. r. Watkins. Text
classification using string kernels. J. Mach. Learn. Res., 2:419–444, 2002. URL http:
//www.ai.mit.edu/projects/jmlr/papers/volume2/lodhi02a/abstract.html.

P. Mahé and J. P. Vert. Graph kernels based on tree patterns for molecules. Mach. Learn., 75(1):
3–35, 2009. doi: 10.1007/s10994-008-5086-2. URL
http://dx.doi.org/10.1007/s10994-008-5086-2.

A. Nicholls. Oechem, version 1.3.4, openeye scientific software. website, 2005.

J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In T. Washio and
L. De Raedt, editors, Proceedings of the First International Workshop on Mining Graphs,
Trees and Sequences, pages 65–74, 2003.

H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string alignment
kernels. Bioinformatics, 20(11):1682–1689, 2004. URL http:
//bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682.

N. Sherashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient graphlet
kernels for large graph comparison. In 12th International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 488–495, Clearwater Beach, Florida USA, 2009. Society for
Artificial Intelligence and Statistics.

http://www.ai.mit.edu/projects/jmlr/papers/volume2/lodhi02a/abstract.html
http://www.ai.mit.edu/projects/jmlr/papers/volume2/lodhi02a/abstract.html
http://dx.doi.org/10.1007/s10994-008-5086-2
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682

	Motivations
	Linear SVM
	Nonlinear SVM and kernels
	Kernels for strings and graphs
	Conclusion
	References

