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Recall the definition of an RKHS:

Definition 1. Let X be a set and H C RX be a class of functions forming a Hilbert space with inner
product (.,.) 4. The function K : X2 — R is called a reproducing kernel (r.k.) of H if

1. H contains all functions of the form

VXEX, Kyit K(x,t). (1)

2. Foreveryx € X and f € ¥ the reproducing property holds:
f(X) =, K) gy - )

If a rk. exists, then H is called a reproducing kernel Hilbert space (RKHS).
Remember that an RKHS has the following property

Theorem 1. A Hilbert space of functions H C RX is a RKHS if and only if for any x € X, the mapping
= f(x) (from H to R) is continuous.

Suppose a sequence of function (f;),en converges in a RKHS to a function f € #. Then the
functions (f, — f) converges to 0 in the RKHS sense, from which we deduce that f,(x) — f(x) also
converges to 0 for any x € X, by continuity of the evaluations functionals. This proves that:

Corollary 1. Convergence in a RKHS implies pointwise convergence on any point, i.e., if f, converges
to f € H, then f,(x) converges to f(x) for any x € X.

We now detail the proof of the following result, due to ?, which shows that there is a one-to-one
correspondance between RKHS and r.k. It allows us to talk about “the” RHKS associated to a r.k., and
conversely to ’the” r.k. associated to a RKHS.

Theorem 2. 1. Ifa rk. exists for a Hilbert space H C R, then it is unique.
2. Conversely, if two RKHS have the same r.k., then they are equal.

Proof. To prove 1., let # be a RKHS with two r.k. kernels K and K’. For any two points X,y € X, we
need to show that K (x,y) = K’ (x,y). By the first property of RKHS, we know that the functions Ky and
K} are in #{, and using the second property we obtain:

| Kx — Ky I3, = (Kx— Ky, Kx — Ky ) 5
= (Kx —K,’(,KX>H— (Kx —K,@,K,@)H
= Ky (x) — Ky (%) — Kx () + Ky (x)

=0.
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H being a Hilbert space, only the zero function has a norm equal to 0. This shows that Ky = K}, as
functions, and in particular that Ky (y) = K;(y), i.e., K (x,y) = K’ (x,y).
To prove the converse, let us first consider a RKHS #, with r.k. K. By definition of the r.k., we know
that all the functions K, for x € X are in Hj, therefore their linear span

n
Hy = {Zocini : nEN,Ocl,...,OcnGR,xl,...,anX}
i=1

is a subspace of ;. Now we observe that if f € # is orthogonal to #{, then in particular it is orthogonal
to K, for any x which implies f(x) = (f,Ky)4 =0, i.e., f = 0. In other words, # is dense in 7.
Moreover the H; norm for functions in 4, only depends on the r.k. K, because it is given for a function
=X 0Ky, € 7 by

n n
1115 = Y ) owoty (Ko Ko )
i=1j=1 3)
n

Suppose now that 75 is also a RKHS that admits K as r.k. Then by the same argument, the space
is dense in #,, and the #, norm in 7 is given by . In particular, for any f € Hy, || f|ls5 = || f || 2-
Let now f € H,. By density of Hy in i, there is a sequence (f,) in #Hy such that || f, — f||4; — O.
The converging sequence (f;) is in particular a Cauchy sequence for the ] norm, and since this norm
coincides with the #5 norm on Hy, (f,) is also a Cauchy sequence for the #4 norm and converges
in 44 to a function g € #5. By Corollary |I| applied to both ) and %5, we see that, for any x € X,
lim,,— 0 fn(x) = f(x) = g(x). In other words, f = g and therefore f € #,. This shows that H; C #5
and, by symmetry of the argument, in fact that #{ = #,. We now need to check that the norms in #
and 76 coincide, which results from:

1 £l = i [ fullag = tim | fullog = 1 £ L5



