Aronszajn’s theorem

Jean-Philippe Vert

We detail the proof of Aronszajn’s theoram which shows the equivalence between being positive
definiteness (p.d.) and being a reproducing kernel (r.k.), as shown by ?. Recall that p.d. and r.k. kernels
are defined as follows:

Definition 1. Let X be a set. A function K : X x X — R is called a positive definite kernel on X iff it is
symmetric, that is, K(x,x") = K(X',x) for any two objects x,x' € X, and positive definite, that is,

n
Z K(x;,x;) >0

-

for any n > 0, any choice of n points X1, --- ,X, € X, and any choice of real numbers c1,--- ,c, € R.

Definition 2. Let X be a set and H C R* be a class of functions forming a Hilbert space with inner
product {.,.) 4. The function K : X*> — R is called a reproducing kernel (r.k.) of # if

1. H contains all functions of the form

Vxe X, Ki:t— K(xt). (1

2. Foreveryx € X and f € H the emphreproducing property holds:
J(x) =, K) gy - )

If a r.k. exists, then H is called a reproducing kernel Hilbert space (RKHS).
Aronszajn’s theorem now states that:

Theorem 1. For any set X, a function K : X x X is positive definite if and only if it is a reproducing
kernel.

Proof. Let us first assume that K is the r.k. of an RKHS #. Then it is symmetric because, for any
(x,y) € X2, we can use the symmetry of the inner product in # to get:

K(x,y)= <KX=Ky>g{ = (KyaKX>g{ =K(y,x) .

Moreover, for any N € N,(x1,Xa,...,xy) € XV, and (ay,as,...,ay) € RV:

N N
Z aia;K (X;,X;j) = Z aaj <Kxi7KXj>7~[

i,j=1 i,j=1

N
= Y aiky |15
i=1

>0.
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K is therefore p.d. Conversely, let us now suppose that K is p.d. In order to build a RKHS having K
as r.k., we start by considering the vector space Hy C RX spanned by the functions {Ky} For any

f,8& € Hy, given by:

xeX*

n
aiKX,'7 8= Z ijy, )
1 j=1

(agE

f=

let us define the operation:

(f8) Hy ZZabK Xl:Y])

i=1j=
We note that (f, g) 5, does not depend on the expansion of f and g, because:

m

n
(f,8) s = Y aig(x) =Y b;f(y)) -
i=1 j=1
This also shows that (.,.) 5, is a symmetric bilinear form. Moreover, for any x € X and f € Hy:

(1 Kx) g = £ (x) -

Now, K being assumed to be p.d., we also have:

115 = Zaaj (xi,xj) > 0.
i,j=1

In particular Cauchy-Schwarz inequality is valid with (.,.) ;.. We deduce that Vx € X:

X) | = [ (K sg | < 1 1l K (x,%)7

therefore || f ||, =0 = f = 0. In other words, # is a pre-Hilbert space endowed with the inner
product (.,.) -

At this step, we have built a pre-Hilbert space which has all the properties of a RKHS for K, except
for the completeness. We now need to extend # to make it complete. For that purpose, let us first note
that for any Cauchy sequence (f;,),>0 in (%, (.,.) %), it holds that:

¥ (xmn) € XX N2 | fin(X) = o ()| < | fon — & [l K (%, %)

This shows that for any x the sequence (f,(X)),~, is Cauchy in R and has therefore a limit. Let us now
consider # C RY to be the set of functions f : X — R which are pointwise limits of Cauchy sequences
in Hy, i.e., if (f,,) is a Cauchy sequence in Hy, then f(x) =lim,_, o f,(x). We can observe that Hy C #.
Indeed, for any f € #, it suffices to take the constant function f,, = f for any n > 0 to obtain a Cauchy
sequence in Hy which converges pointwise to f. We shall now define an inner product on #, and show
that 4 endowed with that inner product it is a RKHS with reproducing kernel K.

For that purpose, let us first show a useful property of Cauchy sequences in .

Lemma 1. Any Cauchy sequence (fy,),cy in Ho which converges pointwise to 0 satisfies:
im [ fllsg =0,

Indeed, let (f,) be a Cauchy sequence in Hy. Any Cauchy sequence being bounded, let B > || £, ||
for any n € N. For any € > 0, let N € N be such that, for any n > N, || f, — fv || < €/B. The function
fv € Hy can be expanded as:

p
= ZOCiK(Xi,X),
i=1
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for some p € N,a,...,0, € Rand xy,...,x, € X. We then get, for any n > N:
an H%{) - <fn _fN7fl1>,‘7{) + <fN7fn>%
P
<e+ Z(xifn (Xl) .
i=1

Since f; (x;) converges to 0 fori = 1,..., p, we obtain that || f,, || 5 < 2€ for n large enough, i.e.,
converges to 0. This proves Lemmal[l]

Coming back to the proof of Theorem[l] let us consider two Cauchy sequences (f,) and (g,) in #.
These sequences define two functions f and g € H as their pointwise limits. Let us first show that the
inner product (fy, g,) g, converges. For that purpose, we note using the Cauchy-Schwarz inequality that,
for any nym € N

an%

‘ <fn7gn>% - <fm)gm>% ‘ = ’ <fnagn_gm>% + {fa _fmagm>% ’
< an ||%||gn_gm||%+an_me%HgmH%

Since each Cauchy sequence is bounded in norm, we obtain that (( Jnr&n) %)neN is a Cauchy sequence in
R. We have thus shown that the inner product (f,,,gx) 5, converges. Let us now show that the limit value
only depends on the pointwise limits f and g. For that purpose, let (f,) and (g/,) be two other Cauchy
sequences in Hy which also converge pointwisely to f and g, respectively. Then the sequence (f,, — ;)
(resp. (g, —g,,)) is a Cauchy sequence in Hy which converges pointwisely to 0, and from Lemmawe
obtain that lim,, , e || fu — f7, [| 2, = O (resp. lim, o || gn — &, || 35 = 0). Now we observe that:

< 1 ll o)l 80— g Lo+ 1= fo ll 2611 80 1l -

Both Cauchy sequences being upper bounded in norm, this shows that (f;,, gx) 5, and (fy,&y,) 4;» have the
same limit, which only depends on f and g. This allows to define formally, for any f,g € H defined as
pointwise limits of Cauchy sequences (f,,) and (g,) in #j:

n—+-oo

It is easy to see that (.,.), is a positive bilinear form, using the same properties of (.,.) 54+ Let now a
function f € A such that || f ||§[ = (f, f)4 =0. By definition f is a poinwise limit of a Cauchy sequence
(fn) in Hy, and 0 = || f'|| 4y = limy,— oo || i || 2,- We then obtain, for any x € X,

[f()] = tim | fy(x)]
= lim | (fu, Kx) s |

n—+-oo
1 .
<K®X)?x lim [ £, s

=0,

showing that f = 0. This shows that # is a pre-Hilbert space with inner product (.,.),,. Moreover, for
any f € H defined as the pointwise limit of a Cauchy function (f,) in #,, we note that f,, € H for any
n € N, and that

i [|f=fullgr = lim lim [[f, = fl[4 =0 3)

n——+oo n—r 00 p—roo

This shows in particular that #4 is dense in #, with respect to the topology defined by the metric || . || .
Let us now show the completeness of . For that purpose, let (f,) be a Cauchy sequence in . By
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density of #H in H, for each n € N we can define a function f, € H; such that lim,,_, o || f, — f1 || s = 0.
For every € > 0, let N € N be such that, for every n,m > N, || fu — fu llor < €/3 and || f, — [} |lor < €/3.
Using the fact that the norms ||. || 5, and ||. || 4y coincide on H, we then obtain, for any n,m > N:

1= Tl = 1= fon 1
<N o= Falloe + 1 fa = Fonlog + 1| fon = SFon o

<e+e+e @)
-3 3 3
<e.

This shows that (f;) is a Cauchy sequence in #, which therefore defines a function f € A by pointwise
convergence. Moreover this function satisfies, by (3),

lim || f = fyllsr =0,

n——+oo

and therefore
lim || f— fullsr <

n—~-o0 T n

tim|L£ = £yl i || £2 = folloe = .

This shows that f € # is the limit of the Cauchy sequence ( f,,), and therefore that # is complete. # is
therefore a Hilbert space of functions.

To conclude the proof and show that # is a RKHS which admits K as r.k., we further need to
show that the properties and are fulfilled. Condition is immediate since for any x € X, by
construction, Kx € H and #Hy C . To prove (2), let x € X and f € #{. f is defined pointwisely as the
limit of a Cauchy sequence (f,,) in Hy, and by construction of the inner product in A satisfies

f(0= tim £, (x)
= HETOO <fn>Kx>%

= <f7KX>}[ :

This concludes the proof of Theorem I] O



