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We detail the proof of Aronszajn’s theoram which shows the equivalence between being positive
definiteness (p.d.) and being a reproducing kernel (r.k.), as shown by ?. Recall that p.d. and r.k. kernels
are defined as follows:

Definition 1. Let X be a set. A function K : X ×X → R is called a positive definite kernel on X iff it is
symmetric, that is, K(x,x′) = K(x′,x) for any two objects x,x′ ∈ X , and positive definite, that is,

n

∑
i=1

n

∑
j=1

cic jK(xi,x j)≥ 0

for any n > 0, any choice of n points x1, · · · ,xn ∈ X , and any choice of real numbers c1, · · · ,cn ∈ R.

Definition 2. Let X be a set and H ⊂ RX be a class of functions forming a Hilbert space with inner
product 〈., .〉H . The function K : X 2 7→ R is called a reproducing kernel (r.k.) of H if

1. H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) . (1)

2. For every x ∈ X and f ∈H the emphreproducing property holds:

f (x) = 〈 f ,Kx〉H . (2)

If a r.k. exists, then H is called a reproducing kernel Hilbert space (RKHS).

Aronszajn’s theorem now states that:

Theorem 1. For any set X , a function K : X ×X is positive definite if and only if it is a reproducing
kernel.

Proof. Let us first assume that K is the r.k. of an RKHS H . Then it is symmetric because, for any
(x,y) ∈ X 2, we can use the symmetry of the inner product in H to get:

K (x,y) = 〈Kx,Ky〉H = 〈Ky,Kx〉H = K (y,x) .

Moreover, for any N ∈ N,(x1,x2, . . . ,xN) ∈ X N , and (a1,a2, . . . ,aN) ∈ RN :

N

∑
i, j=1

aia jK (xi,x j) =
N

∑
i, j=1

aia j
〈
Kxi ,Kx j

〉
H

= ‖
N

∑
i=1

aiKxi ‖2
H

≥ 0 .
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K is therefore p.d. Conversely, let us now suppose that K is p.d. In order to build a RKHS having K
as r.k., we start by considering the vector space H0 ⊂ RX spanned by the functions {Kx}x∈X . For any
f ,g ∈H0, given by:

f =
m

∑
i=1

aiKxi , g =
n

∑
j=1

b jKy j ,

let us define the operation:

〈 f ,g〉H0
:=

m

∑
i=1

n

∑
j=1

aib jK (xi,y j) .

We note that 〈 f ,g〉H0
does not depend on the expansion of f and g, because:

〈 f ,g〉H0
=

m

∑
i=1

aig(xi) =
n

∑
j=1

b j f (y j) .

This also shows that 〈., .〉H0
is a symmetric bilinear form. Moreover, for any x ∈ X and f ∈H0:

〈 f ,Kx〉H0
= f (x) .

Now, K being assumed to be p.d., we also have:

‖ f ‖2
H0

=
m

∑
i, j=1

aia jK (xi,x j)≥ 0 .

In particular Cauchy-Schwarz inequality is valid with 〈., .〉H0
. We deduce that ∀x ∈ X :

| f (x) |=
∣∣〈 f ,Kx〉H0

∣∣≤ ‖ f ‖H0
.K (x,x)

1
2 ,

therefore ‖ f ‖H0
= 0 =⇒ f = 0. In other words, H0 is a pre-Hilbert space endowed with the inner

product 〈., .〉H0
.

At this step, we have built a pre-Hilbert space which has all the properties of a RKHS for K, except
for the completeness. We now need to extend H0 to make it complete. For that purpose, let us first note
that for any Cauchy sequence ( fn)n≥0 in

(
H0,〈., .〉H0

)
, it holds that:

∀(x,m,n) ∈ X ×N2, | fm (x)− fn (x) | ≤ ‖ fm−gn ‖H0
.K (x,x)

1
2 .

This shows that for any x the sequence ( fn(x))n≥0 is Cauchy in R and has therefore a limit. Let us now
consider H ⊂ RX to be the set of functions f : X → R which are pointwise limits of Cauchy sequences
in H0, i.e., if ( fn) is a Cauchy sequence in H0, then f (x) = limn→+∞ fn(x). We can observe that H0 ⊂H .
Indeed, for any f ∈H0, it suffices to take the constant function fn = f for any n≥ 0 to obtain a Cauchy
sequence in H0 which converges pointwise to f . We shall now define an inner product on H , and show
that H endowed with that inner product it is a RKHS with reproducing kernel K.

For that purpose, let us first show a useful property of Cauchy sequences in H0.

Lemma 1. Any Cauchy sequence ( fn)n∈N in H0 which converges pointwise to 0 satisfies:

lim
n→+∞

‖ fn ‖H0
= 0 .

Indeed, let ( fn) be a Cauchy sequence in H0. Any Cauchy sequence being bounded, let B > ‖ fn ‖
for any n ∈ N. For any ε > 0, let N ∈ N be such that, for any n > N, ‖ fn− fN ‖ < ε/B. The function
fN ∈H0 can be expanded as:

fN(x) =
p

∑
i=1

αiK(xi,x) ,
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for some p ∈ N,α1, . . . ,αp ∈ R and x1, . . . ,xp ∈ X . We then get, for any n > N:

‖ fn ‖2
H0

= 〈 fn− fN , fn〉H0
+ 〈 fN , fn〉H0

≤ ε+
p

∑
i=1

αi fn (xi) .

Since fn (xi) converges to 0 for i = 1, . . . , p, we obtain that ‖ fn ‖H0
< 2ε for n large enough, i.e., ‖ fn ‖H0

converges to 0. This proves Lemma 1.
Coming back to the proof of Theorem 1, let us consider two Cauchy sequences ( fn) and (gn) in H0.

These sequences define two functions f and g ∈ H as their pointwise limits. Let us first show that the
inner product 〈 fn,gn〉H0

converges. For that purpose, we note using the Cauchy-Schwarz inequality that,
for any n,m ∈ N∣∣〈 fn,gn〉H0

−〈 fm,gm〉H0

∣∣= ∣∣〈 fn,gn−gm〉H0
+ 〈 fn− fm,gm〉H0

∣∣
≤ ‖ fn ‖H0

‖gn−gm ‖H0
+‖ fn− fm ‖H0

‖gm ‖H0
.

Since each Cauchy sequence is bounded in norm, we obtain that
(
〈 fn,gn〉H0

)
n∈N is a Cauchy sequence in

R. We have thus shown that the inner product 〈 fn,gn〉H0
converges. Let us now show that the limit value

only depends on the pointwise limits f and g. For that purpose, let ( f ′n) and (g′n) be two other Cauchy
sequences in H0 which also converge pointwisely to f and g, respectively. Then the sequence ( fn− f ′n)
(resp. (gn−g′n)) is a Cauchy sequence in H0 which converges pointwisely to 0, and from Lemma 1 we
obtain that limn→+∞ ‖ fn− f ′n ‖H0

= 0 (resp. limn→+∞ ‖gn−g′n ‖H0
= 0). Now we observe that:∣∣∣〈 fn,gn〉H0

−
〈

f ′n,g
′
n
〉

H0

∣∣∣= ∣∣∣〈 fn,gn−g′n
〉

H0
+
〈

fn− f ′n,g
′
n
〉

H0

∣∣∣
≤ ‖ fn ‖H0

‖gn−g′n ‖H0
+‖ fn− f ′n ‖H0

‖g′n ‖H0
.

Both Cauchy sequences being upper bounded in norm, this shows that 〈 fn,gn〉H0
and 〈 f ′n,g′n〉H0

, have the
same limit, which only depends on f and g. This allows to define formally, for any f ,g ∈H defined as
pointwise limits of Cauchy sequences ( fn) and (gn) in H0:

〈 f ,g〉H = lim
n→+∞

〈 fn,gn〉H0
.

It is easy to see that 〈., .〉H is a positive bilinear form, using the same properties of 〈., .〉H0
. Let now a

function f ∈H such that ‖ f ‖2
H = 〈 f , f 〉H = 0. By definition f is a poinwise limit of a Cauchy sequence

( fn) in H0, and 0 = ‖ f ‖H = limn→+∞ ‖ fn ‖H0
. We then obtain, for any x ∈ X ,

| f (x) |= lim
n→+∞

| fn (x) |

= lim
n→+∞

∣∣〈 fn,Kx〉H0

∣∣
≤ K (x,x)

1
2 × lim

n→+∞
‖ fn ‖H0

= 0 ,

showing that f = 0. This shows that H is a pre-Hilbert space with inner product 〈., .〉H . Moreover, for
any f ∈H defined as the pointwise limit of a Cauchy function ( fn) in H0, we note that fn ∈H for any
n ∈ N, and that

lim
n→+∞

‖ f − fn ‖H = lim
n→+∞

lim
p→∞
‖ fp− fn ‖H0

= 0 . (3)

This shows in particular that H0 is dense in H , with respect to the topology defined by the metric ‖ .‖H .
Let us now show the completeness of H . For that purpose, let ( fn) be a Cauchy sequence in H . By
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density of H0 in H , for each n ∈N we can define a function f ′n ∈H0 such that limn→+∞ ‖ fn− f ′n ‖H = 0.
For every ε > 0, let N ∈ N be such that, for every n,m > N, ‖ fn− fm ‖H < ε/3 and ‖ fn− f ′n ‖H < ε/3.
Using the fact that the norms ‖ .‖H0

and ‖ .‖H coincide on H0, we then obtain, for any n,m > N:

‖ f ′n− f ′m ‖H0
= ‖ f ′n− f ′m ‖H

≤ ‖ f ′n− fn ‖H +‖ fn− fm ‖H +‖ fm− f ′m ‖H

≤ ε

3
+

ε

3
+

ε

3
≤ ε .

(4)

This shows that ( f ′n) is a Cauchy sequence in H0, which therefore defines a function f ∈H by pointwise
convergence. Moreover this function satisfies, by (3),

lim
n→+∞

‖ f − f ′n ‖H = 0 ,

and therefore
lim

n→+∞
‖ f − fn ‖H ≤ lim

n→+∞
‖ f − f ′n ‖H + lim

n→+∞
‖ f ′n− fn ‖H = 0 .

This shows that f ∈H is the limit of the Cauchy sequence ( fn), and therefore that H is complete. H is
therefore a Hilbert space of functions.

To conclude the proof and show that H is a RKHS which admits K as r.k., we further need to
show that the properties (1) and (2) are fulfilled. Condition (1) is immediate since for any x ∈ X , by
construction, Kx ∈H0 and H0 ⊂H . To prove (2), let x ∈ X and f ∈H . f is defined pointwisely as the
limit of a Cauchy sequence ( fn) in H0, and by construction of the inner product in H satisfies

f (x) = lim
n→+∞

fn (x)

= lim
n→+∞

〈 fn,Kx〉H0

= 〈 f ,Kx〉H .

This concludes the proof of Theorem 1.


