
MVA ”Kernel methods in machine learning”
Homework

Julien Mairal and Jean-Philippe Vert

Upload your answers (in PDF) to:
http://tiny.cc/6o9fkz

before February 26, 2020, 1pm (Paris time).

Exercice 1. Kernels
Show that the following kernels are positive definite:

1. Let X be a set and f, g : X → R+ two non-negative functions:

∀x, y ∈ X K4(x, y) = min(f(x)g(y), f(y)g(x))

2. Given a non-empty finite set E, on X = P(E) = {A : A ⊂ E}:

∀A,B ⊂ E , K (A,B) =
|A ∩B |
|A ∪B |

,

where |F | denotes the cardinality of F , and with the convention 0
0

= 0.

Exercice 2. Kernels encoding equivalence classes.
Consider a similarity measure K : X × X → {0, 1} with K(x, x) = 1 for all
x in X . Prove that K is p.d. if and only if, for all x, x′, x′′ in X ,

• K(x, x′) = 1⇔ K(x′, x) = 1, and

• K(x, x′) = K(x′, x′′) = 1⇒ K(x, x′′) = 1.
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Exercice 3. COCO
Given two sets of real numbers X = (x1, . . . , xn) ∈ Rn and Y = (y1, . . . , yn) ∈
Rn, the covariance between X and Y is defined as

covn(X, Y ) = En(XY )− En(X)En(Y ) ,

where En(U) = (
∑n

i=1 ui)/n. The covariance is useful to detect linear rela-
tionships between X and Y . In order to extend this measure to potential
nonlinear relationships between X and Y , we consider the following criterion:

CK
n (X, Y ) = max

f,g∈BK
covn(f(X), g(Y )) ,

where K is a positive definite kernel on R, BK is the unit ball of the RKHS
of K, and f(U) = (f(u1), . . . , f(un)) for a vector U = (u1, . . . , un).

1. Express simply CK
n (X, Y ) for the linear kernel K(a, b) = ab.

2. For a general kernel K, express CK
n (X, Y ) in terms of the Gram matri-

ces of X and Y .

Exercice 4. Dual coordinate ascent algorithms for SVMs
We recall the primal formulation of SVMs seen in the class (slide 148).

min
f∈H

1

n

n∑
i=1

max(0, 1− yif(xi)) + λ‖f‖2H,

and its dual formulation (slide 158)

max
α∈Rn

2α>y −α>Kα such that 0 ≤ yiαi ≤
1

2λn
, for all i.

1. The coordinate ascent method consists of iteratively optimizing with
respect to one variable, while fixing the other ones. Assuming that
you want to maximize the dual by following this approach. Find (and
justify) the update rule for αj.

2. Consider now the primal formulation of SVMs with intercept

min
f∈H,b∈R

1

n

n∑
i=1

max(0, 1− yi(f(xi) + b)) + λ‖f‖2H,
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Can we still apply the representer theorem? Why? Derive the corre-
sponding dual formulation by using Lagrangian duality. Can we apply
the coordinate ascent method to this dual? If yes, what are the update
rules?

3. Consider a coordinate ascent method to this dual that consists of up-
dating two variables (αi, αj) at a time (while fixing the n − 2 other
variables). What are the update rules for these two variables?

Exercice 5. Duality
Let (x1, y1), . . . , (xn, yn) a training set of examples where xi ∈ X , a space
endowed with a positive definite kernel K, and yi ∈ {−1, 1}, for i = 1, . . . , n.
HK denotes the RKHS of the kernel K. We want to learn a function f :
X 7→ R by solving the following optimization problem:

min
f∈HK

1

n

n∑
i=1

`yi (f(xi)) such that ‖ f ‖HK
≤ B , (1)

where `y is a convex loss functions (for y ∈ {−1, 1}) andB > 0 is a parameter.

1. Show that there exists λ ≥ 0 such that the solution to problem (??)
can be found be solving the following problem:

min
α∈Rn

R(Kα) + λα>Kα , (2)

where K is the n×n Gram matrix and R : Rn 7→ R should be explicited.

2. Compute the Fenchel-Legendre transform1 R∗ of R in terms of the
Fenchel-Legendre transform `∗y of `y.

3. Adding the slack variable u = Kα, the problem (??) can be rewritten
as a constrained optimization problem:

min
α∈Rn,u∈Rn

R(u) + λα>Kα such that u = Kα . (3)

1For any function f : RN 7→ R, the Fenchel-Legendre transform (or convex conjugate)
of f is the function f∗ : RN 7→ R defined by

f∗(u) = sup
x∈RN

x>u− f(x) .
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Express the dual problem of (??) in terms of R∗, and explain how a
solution to (??) can be found from a solution to the dual problem.

4. Explicit the dual problem for the logistic and squared hinge losses:

`y(u) = log(1 + e−yu) .

`y(u) = max(0, 1− yu)2 .
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