Homework 6

Jean-Philippe Vert

Due March 30, 2010

$1 \quad B_{n}$-splines

The convolution between two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by:

$$
f \star g(x)=\int_{-\infty}^{\infty} f(u) g(x-u) d u
$$

when this integral exists.
Let now the function:

$$
I(x)= \begin{cases}1 & \text { si }-1 \leq x \leq 1 \\ 0 & \text { si } x<-1 \text { ou } x>1\end{cases}
$$

and $B_{n}=I^{\star n}$ for $n \in \mathbb{N}_{*}$ (that is, the function I convolved n times with itself: $B_{1}=I, B_{2}=I \star I, B_{3}=I \star I \star I$, etc...).

Is the function $k(x, y)=B_{n}(x-y)$ a positive definite kernel over $\mathbb{R} \times \mathbb{R}$? If yes, describe the corresponding reproducing kernel Hilbert space.

2 More kernels...

3.1 Are the following functions positive definite kernels?

$$
\begin{gathered}
\forall x, y \in \mathbb{R}, \quad K_{2}(x, y)=\frac{1}{2-e^{-\|x-y\|^{2}}} \\
\forall x, y \in \mathbb{R}, \quad K_{3}(x, y)=\max (0,1-|x-y|)
\end{gathered}
$$

3.2. For any $n>0$, show that the $n \times n$ Hankel matrix $A_{i j}=\frac{1}{1+i+j}$ is positive semidefinite.
3.3. Describe the functions $\phi:[0,1] \mapsto \mathbb{R}$ such that:

$$
K(x, y)=\phi(\max (x+y-1,0))
$$

is a positive definite kernel on $[0,1]$.
3.4. (BONUS) Describe the functions $\phi: \mathbb{R}^{+} \mapsto \mathbb{R}$ such that:

$$
K(x, y)=\phi(\max (x, y))
$$

is a positive definite kernel on \mathbb{R}^{+}.

