Homework 4

Jean-Philippe Vert

Due February 23, 2010

1 2-SVM

The 2-SVM algorithm is a method for supervised binary classification. Given a training set $\left(x_{i}, y_{i}\right)_{i=1, \ldots, n}$ of training patterns x_{1}, \ldots, x_{n} in a space X endowed with a positive definite kernel K, and a set of corresponding labels $y_{1}, \ldots, y_{n} \in\{-1,1\}$, it solves the following problem:

$$
\min _{f \in H_{K}}\left\{\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(x_{i}\right), y_{i}\right)+\lambda\|f\|^{2}\right\},
$$

where $\|f\|$ is the norm of f in the RKHS H_{K} of the kernel K, and L is the square hinge loss function:

$$
L(u, y)=\max (1-u y, 0)^{2} .
$$

Write the primal and dual problems associated to the 2-SVM, and compare the result with the SVM studied in the course.

