Homework 2

Jean-Philippe Vert

Due February 4, 2010

1 Kernel LDA

Fisher's linear discriminant analysis (LDA) is a method for supervised binary classification of finite-dimensional vectors. Given two sets of points $S_1 = \{x_1^1, \ldots, x_{n_1}^1\}$ and $S_2 = \{x_1^2, \ldots, x_{n_2}^2\}$ in \mathbb{R}^p , let us denote by $m_i = \frac{1}{n_i} \sum_{j=1}^{l_i} x_j^i$, and by:

$$S_B = (m_1 - m_2)(m_1 - m_2)^{\top}, \qquad (1)$$

$$S_W = \sum_{i=1,2} \sum_{x \in S_i} (x - m_i) (x - m_i)^\top,$$
 (2)

the *between* and *within* class scatter matrices, respectively. LDA constructs the function

$$f_w(x) = w^\top x \,,$$

where w is the vector which maximizes

$$J(w) = \frac{w^{\top} S_B w}{w^{\top} S_W w} \,.$$

1. Why does it make sense to maximize J(w)? What do we expect to find? (you can take as example the case where the two sets S_1 and S_2 form two clusters, e.g., two Gaussians).

2. We want to extend LDA to the feature space \mathcal{H} induced by a positive definite kernel K by the relations $K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$. For a vector $w \in \mathcal{H}$ that is a linear combination of the form

$$w = \sum_{i=1,2} \sum_{j=1}^{n_i} \alpha_j^i \Phi(x_j^i)$$

express J(w) and $f_w(x)$ as a function of α and K.

2 Rademacher complexity

A Rademacher variable is a random variables σ that can take two possible values, -1 and +1, with equal probability 1/2.

1. Let (u_1, u_2, \ldots, u_N) be N vectors in a Hilbert space endowed with an inner product $\langle ., . \rangle$, and let $\sigma_1, \sigma_2, \ldots, \sigma_N$ be N independent Rademacher variables. Show that:

$$\mathbb{E}\left(\sum_{i=1}^{N}\sum_{j=1}^{N}\sigma_{i}\sigma_{j} < u_{i}, u_{j} > \right) = \sum_{i=1}^{N} \|u_{i}\|^{2}$$

2. Let K be a positive definite kernel on a space \mathcal{X} , \mathcal{H}_K denote the associated reproducing kernel Hilbert space, and $B_R = \{f \in \mathcal{H}_K, \|f\|_{\mathcal{H}_K} \leq R\}$. Let a set of points $\mathcal{S} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$ with $\mathbf{x}_i \in \mathcal{X}$ $(i = 1, \dots, N)$, and let $\sigma_1, \sigma_2, \dots, \sigma_N$ be N independent Rademacher variables. Show that:

$$\mathbb{E}\sup_{f\in B_{R}}\left|\sum_{i=1}^{N}\sigma_{i}f\left(\mathbf{x}_{i}\right)\right| \leq R\sqrt{\sum_{i=1}^{N}K\left(\mathbf{x}_{i},\mathbf{x}_{i}\right)}$$

3 Conditionally positive definite kernels

Let \mathcal{X} be a set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called *conditionally positive definite* (c.p.d.) if and only if it is symmetric and satisfies:

$$\sum_{i,j=1}^{n} a_i a_j k(x_i, x_j) \ge 0$$

for any $n \in \mathbb{N}, x_1, x_2, \dots, x_n \in \mathcal{X}^n$ and $a_1, a_2, \dots, a_n \in \mathbb{R}^n$ with $\sum_{i=1}^n a_i = 0$

1. Show that a positive definite (p.d.) function is c.p.d.

2. Is a constant function p.d.? Is it c.p.d.?

3. If \mathcal{X} is a Hilbert space, then is $k(x, y) = -||x - y||^2$ p.d.? Is it c.p.d.?

4. Let \mathcal{X} be a nonempty set, and $x_0 \in \mathcal{X}$ a point. For any function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, let $\tilde{k} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be the function defined by:

$$k(x, y) = k(x, y) - k(x_0, x) - k(x_0, y) + k(x_0, x_0).$$

Show that k is c.p.d. if and only if k is p.d.

5. Let k be a c.p.d. kernel on \mathcal{X} such that k(x, x) = 0 for any $x \in \mathcal{X}$. Show that there exists a Hilbert space \mathcal{H} and a mapping $\Phi : \mathcal{X} \to \mathcal{H}$ such that, for any $x, y \in \mathcal{X}$,

$$k(x, y) = -||\Phi(x) - \Phi(y)||^2.$$

6. Show that if k is c.p.d., then the function $\exp(tk(x, y))$ is p.d. for all $t \ge 0$

7. Conversely, show that if the function $\exp(tk(x, y))$ is p.d. for any $t \ge 0$, then k is c.p.d.

8. (BONUS) Show that the opposite of the shortest-path distance on a tree is c.p.d over the set of vertices (a tree is an undirected graph without loops. The shortest-path distance between two vertices is the number of edges of the unique path that connects them). Is it also c.p.d. over general graphs?