Homework 1

Jean-Philippe Vert

Due January 21, 2010

1 Some kernels

Which of the following functions are positive definite:

$$\forall -1 < x, y < 1 \quad K_1(x, y) = \frac{1}{1 - xy}$$

$$\forall x, y \ge 0 \quad K_2(x, y) = \min(x, y)$$

$$\forall x, y \ge 0 \quad K_3(x, y) = \max(x, y)$$

$$\forall x, y > 0 \quad K_4(x, y) = \frac{\min(x, y)}{\max(x, y)}$$

$$\forall x, y > 0 \quad K_5(x, y) = \frac{\max(x, y)}{\min(x, y)}$$

$$\forall x, y \in \mathbb{R} \quad K_6(x, y) = \cos(x + y)$$

$$\forall x, y \in \mathbb{R} \quad K_7(x, y) = \cos(x - y)$$

$$\forall x, y \in \mathbb{R} \quad K_8(x, y) = \sin(x + y)$$

$$\forall x, y \in \mathbb{R} \quad K_9(x, y) = \sin(x - y)$$

2 Completeness of the RKHS

We want to finish the construction of the RKHS associated to a positive definite kernel K given in the course. Remember we have defined the set of functions:

$$\mathcal{H}_0 = \left\{ \sum_{i=1}^n \alpha_i K_{x_i} : n \in \mathbb{N}, \alpha_1, \dots, \alpha_n \in \mathbb{R}, x_1, \dots, x_n \in \mathcal{X} \right\}$$

and for any two functions $f, g \in \mathcal{H}_0$, given by:

$$f = \sum_{i=1}^{m} a_i K_{\mathbf{x}_i}, \quad g = \sum_{j=1}^{n} b_j K_{\mathbf{y}_j},$$

we have defined the operation:

$$\langle f, g \rangle_{\mathcal{H}_0} := \sum_{i,j} a_i b_j K(\mathbf{x}_i, \mathbf{y}_j).$$

In the course we have shown that \mathcal{H}_0 endowed with this inner product is a pre-Hilbert space. Let us now show how to finish the construction of the RKHS from \mathcal{H}_0

- **1.** Show that any Cauchy sequence (f_n) in \mathcal{H}_0 converges pointwisely to a function $f: \mathcal{X} \to \mathbb{R}$ defined by $f(x) = \lim_{n \to +\infty} f_n(x)$.
- **2.** Show that any Cauchy sequence $(f_n)_{n\in\mathbb{N}}$ in \mathcal{H}_0 which converges pointwise to 0 satisfies:

$$\lim_{n\to+\infty} \|f_n\|_{\mathcal{H}_0} = 0.$$

- **3.** Let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be the set of functions $f: \mathcal{X} \to \mathbb{R}$ which are pointwise limits of Cauchy sequences in \mathcal{H}_0 , i.e., if (f_n) is a Cauchy sequence in \mathcal{H}_0 , then $f(x) = \lim_{n \to +\infty} f_n(x)$. Show that $\mathcal{H}_0 \subset \mathcal{H}$.
- **4.** If (f_n) and (g_n) are two Cauchy sequences in \mathcal{H}_0 , which converge pointwisely to two functions f and $g \in \mathcal{H}$, show that the inner product $\langle f_n, g_n \rangle_{\mathcal{H}_0}$ converges to a number which only depends on f and g. This allows us to define formally the operation:

$$\langle f, g \rangle_{\mathcal{H}} = \lim_{n \to +\infty} \langle f_n, g_n \rangle_{\mathcal{H}_0}$$
.

- **5.** Show that $\langle .,. \rangle_{\mathcal{H}}$ is an inner product on \mathcal{H} .
- **6.** Show that \mathcal{H}_0 is dense in \mathcal{H} (with respect to the metric defined by the inner product $\langle ., . \rangle_{\mathcal{H}}$)
 - **7.** Show that \mathcal{H} is complete.
 - **8.** Show that \mathcal{H} is a RKHS whose reproducing kernel is K.