
Quiz #1: Kernel Methods for Machine Learning

Problem 1

Given data (x1, y1), . . . , (xn, yn) ∈ Rp × R, ridge regression solves: for some λ ≥ 0,

min
β∈Rp

1

n

n∑
i=1

(yi − β>xi)
2 + λ‖β‖2 .

(1) Why is λ important?

(2) What happens if λ is too small or too large?

(3) In practice, how would you choose the value of λ?

Solutions:

(1) The regularization parameter λ controls the amount of shrinkage: the larger the
value of λ, the greater the amount of shrinkage on the coefficients toward zero.
When there exist many correlated variables in a linear regression model (which
typically happen when n < p), their coefficients can become poorly determined
and exhibit high variance without any regularization. Usually this may lead to
poor generalization on test data, a phenomenon typically known as over-fitting.
By imposing a size constraint such as ridge on the coefficients during training,
this problem can be alleviated.

(2) If λ is too small (and returns least-squares estimator when λ = 0 at an extreme),
estimated coefficients can exhibit high variance due to overfitting, leading to
poor generalization on test data. If λ is too large (and returns a zero estimator
when λ = +∞ at the other extreme), estimated coefficients can exhibit high bias,
also leading to poor generalization on test data.

(3) Choosing λ during training is typically known as parameter tuning or model
selection, as an attempt to improve generalization on unseen data by trading
off bias and variance of the estimated coefficients. A practical approach is
cross-validation: for a predetermined list of λ’s, pick the one that gives best
cross-validated prediction error.
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Problem 2

Given data (x1, y1), . . . , (xn, yn) ∈ Rp×R, the ridge regression with an intercept solves:
for some λ ≥ 0,

min
β0∈R,β∈Rp

1

n

n∑
i=1

(yi − β0 − β>xi)
2 + λ‖β‖2 .

(1) Find the optimal solutions (β̂0, β̂) ∈ Rp+1 that solve this problem.

(2) How could you solve this problem, suppose you already have a solver for ridge
regression without intercept?

Solutions:

(1) Let us denote by `(β0,β) the objective function. By taking partial derivatives
over the variables and setting them to zero, we have:

∂`

∂β0
= − 2

n

n∑
i=1

(yi − β0 − β>xi) = 0 , (1)

∂`

∂β
= − 2

n

n∑
i=1

(yi − β0 − β>xi)xi + 2λβ = 0 . (2)

Denote in matrix form by X := (x1| . . . |xn)> ∈ Rn×p the design matrix, y :=
(y1, . . . , yn)> ∈ Rn the response vector, 1 := (1, . . . , 1)> ∈ Rn the vector of 1’s of
length n. (1) and (2) are equivalent to:

β0 =
1

n
(y −Xβ)>1 , (3)

X>Xβ + λnβ = X>y − β0X>1 . (4)

Plug (3) into (4) and we get:

X>Xβ + λnβ = X>y −X>
(

1

n
11>

)
(y −Xβ) .

Denote by I the n-dimensional identity matrix, and J := I − 1
n
11> ∈ Rn×n, we

have:
(X>JX + λnI)β = X>Jy ,

which gives the solution to

β̂ = (X>JX + λnI)−1X>Jy . (5)

Plugging β̂ into (3), we get:

β̂0 =
1

n
(y −Xβ̂)>1 . (6)
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Optional: Suppose you would like to find β̂0 directly. Starting with (4), we have:

β = (X>X + λnI)−1X>(y − β01) .

Plug it into (3) and some mathematical deductions give the solution to:

β̂0 =
1>
(
I−X(X>X + λnI)−1X>

)
y

1> (I−X(X>X + λnI)−1X>) 1

=
1>(XX> + λnI)−1y

1>(XX> + λnI)−11
.

(7)

Note that we have also used equality 1>1 = n in the deduction, and the second
equality is due to the matrix inversion lemma.

(2) It is easy to verify that J> = J and J2 = J. Therefore, if we further define
centered data:

X̃ := JX, ỹ := Jy ,

we have that the estimated coefficients (5) can be written as:

β̂ = (X̃>X̃ + λnI)−1X̃>ỹ .

This identifies the form of the estimated coefficients given by ridge regression
without an intercept.

In words, the estimated coefficients of data (X,y) using ridge regression with an
intercept is the same as the estimated coefficients of centered data (X̃, ỹ) using
ridge regression without an intercept.

Optional: Alternatively, we could estimate the intercept β̂0 by (7). Define zi =
yi − β̂0, thus we get an equivalent ridge problem without intercept:

min
β∈Rp

1

n

n∑
i=1

(zi − β>xi)
2 + λ‖β‖2 .

Problem 2*

(1) The Gaussian density in R with mean µ ∈ R and variance σ2 ∈ R+ is:

pµ,σ2(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

Given a set of data points x1, . . . , xn ∈ R, compute the log-likelihood

`(µ, σ2) =
n∑
i=1

log pµ,σ2(xi) ,

and find the maximum likelihood estimates of the parameters by solving:

(µ̂, σ̂2) := arg max
µ∈R,σ2∈R+

`(µ, σ2) .
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(2) The Gaussian density in Rp with mean µ ∈ Rp and a symmetric positive-definite
matrix Ω ∈ Rp×p

+ , known as the precision matrix, is:

pµ,Ω(x) =

√
det(Ω)

(2π)p
exp

{
−1

2
(x− µ)>Ω(x− µ)

}
.

Given a set of data points x1, . . . ,xn ∈ Rp, compute the log-likelihood

`(µ,Ω) =
n∑
i=1

log pµ,Ω(xi) ,

and find the maximum likelihood estimates of the parameters by solving:

(µ̂, Ω̂) := arg max
µ∈Rp,Ω∈Rp×p+

`(µ,Ω) . (8)

(Hint: for any vector u ∈ Rp and any matrix C ∈ Rp×p, you may try to find a
matrix V ∈ Rp×p such that u>Cu = tr(CV).)

(3) Have you noticed a problem when solving (8) if n < p? How could you fix it?

Solutions:

(1) By definition,

`(µ, σ2) =
n∑
i=1

log pµ,σ2(xi) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2 .

In order to find the maximum likelihood estimates (MLE), let us take the partial
derivatives over both parameters and setting them to zero:

∂`

∂µ
=

1

σ2

n∑
i=1

(xi − µ) = 0 , (9)

∂`

∂(σ2)
= − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2 = 0 . (10)

From (9), we have the MLE:

µ̂ =
1

n

n∑
i=1

xi .

Plugging µ̂ into (10), we have the MLE:

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 .
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(2) By definition,

`(µ,Ω) =
n∑
i=1

log pµ,Ω(xi)

= −np
2

log(2π) +
n

2
log det(Ω)− 1

2

n∑
i=1

(xi − µ)>Ω(xi − µ) .

Let us first take the derivative over µ and set it to zero:

∂`

∂µ
=

n∑
i=1

Ω(xi − µ) = 0 .

Since Ω ∈ Rp×p
+ is always invertible, we get the MLE:

µ̂ =
1

n

n∑
i=1

xi .

Plugging this into the data log-likelihood `, and denote the sample covariance
matrix by

S :=
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)> , (11)

we get

`(µ̂,Ω) = −np
2

log(2π) +
n

2
log det(Ω)− 1

2

n∑
i=1

(xi − µ̂)>Ω(xi − µ̂)

= −np
2

log(2π) +
n

2
log det(Ω)− 1

2

n∑
i=1

tr
(
(xi − µ̂)>Ω(xi − µ̂)

)
= −np

2
log(2π) +

n

2
log det(Ω)− 1

2

n∑
i=1

tr
(
Ω(xi − µ̂)(xi − µ̂)>

)
= −np

2
log(2π) +

n

2
log det(Ω)− n

2
tr (ΩS) ,

where the first equality is due to a = tr(a) for any scalar a. Taking the derivative
over Ω and setting it to zero, we get:

∂`

∂Ω

∣∣∣∣
µ=µ̂

=
n

2
Ω−1 − n

2
S = 0 . (12)

In order to find a solution to this equation, S needs to be invertible, and thus we
have MLE:

Ω̂ = S−1 ,

where S is defined in (11).
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(3) If n < p, the sample covariance matrix S is not invertible. In order to fix this
problem, we could resort to regularize the maximum likelihood problem. For
example, we could add a trace-norm regularization to Ω when solving (8): for
some λ > 0,

max
µ∈Rp,Ω∈Rp×p+

˜̀(µ,Ω) := `(µ,Ω)− λ tr(Ω) .

Following similar deduction, (12) now becomes

∂ ˜̀

∂Ω

∣∣∣∣∣
µ=µ̂

=
n

2
Ω−1 − n

2
S− λI = 0 ,

which always has a solution:

Ω̂ =

(
S +

2λ

n
I

)−1
.

Problem 3

Definition. Given a convex function f : Rn → R, the Fenchel dual of f is the
function f ∗ : Rn → R defined by

f ∗(z) = max
x∈Rn

[
z>x− f(x)

]
.

Given a n × p matrix X, a convex function R : Rn → R, λ ≥ 0, let us consider an
L2-regularized optimization problem of the form:

min
w∈Rp

R(Xw) + λ‖w‖2 . (13)

Our goal is to derive a dual problem of (13). To this end, let us rewrite (13) equivalently
as:

minw∈Rp,u∈Rn R(u) + λ‖w‖2
s.t. Xw = u .

(14)

(1) Show that the Lagrangian of (14) is:

L(w,u,α) = R(u) + λ‖w‖2 + α>(Xw − u) ,

where α ∈ Rn is a vector of Lagrange multipliers.

(2) Find an expression of the Lagrange dual function q(α) = minw,u L(w,u,α) using
the Fenchel dual R∗.
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(3) If R(u) =
∑n

i=1 `i(ui), show that R∗(α) =
∑n

i=1 `
∗
i (αi).

(4) Application to ridge regression and ridge logistic regression. Derive a dual prob-
lem for the ridge regression: given (x1, y1), . . . , (xn, yn) ∈ Rp × R,

min
β∈Rp

1

n

n∑
i=1

(yi − β>xi)
2 + λ‖β‖2 ,

and for ridge logistic regression: given (x1, y1), . . . , (xn, yn) ∈ Rp × {−1,+1},

min
β∈Rp

1

n

n∑
i=1

log(1 + e−yiβ
>xi) + λ‖β‖2 .

Solutions:

(1) There are n equality constraints in the optimization problem (14), and each of
them has a Lagrange multiplier in the Lagrangian, denoted by αi, i = 1, . . . , n.
Collecting them into a vector α ∈ Rn, the Lagrangian of (14) is indeed L by
definition.

(2) By definition, we have

q(α) = min
u

[
R(u)−α>u

]
+ min

w

[
λ‖w‖2 + α>Xw

]
= −R∗(α)− 1

4λ
α>XX>α .

(15)

Note that, for the first minimization over u we have used the property that
min g = −max[−g] and the definition of the Fenchel dual of R, and the minimum
of the second minimization over w is attained at ŵ = − 1

2λ
X>α.

(3) By definition of the Fenchel dual and the special form of R(u) =
∑n

i=1 `i(ui), we
have

R∗(α) = max
u∈Rn

[
α>u−R(u)

]
= max

x∈Rn

n∑
i=1

[αiui − `i(ui)]

=
n∑
i=1

max
ui∈R

[αiui − `i(ui)]

=
n∑
i=1

`∗i (αi) .

(16)
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(4) Application to ridge regression. Now R(u) =
∑n

i=1
1
n
(yi − ui)2. Let us first

derive the Fenchel dual of `i(ui) = 1
n
(ui − yi)2. By definition we have

`∗i (αi) = max
ui∈R

[
αiui −

1

n
(ui − yi)2

]
=
n

4
α2
i + αiyi ,

where the maximum is attained at ûi = n
2
αi + yi. By (16), we have

R∗(α) =
n∑
i=1

`∗i (αi) =
n∑
i=1

(n
4
α2
i + αiyi

)
=
n

4
α>α + y>α .

By (15), we have the Lagrange dual function to ridge regression:

q(α) = −n
4
α>α− y>α− 1

4λ
α>XX>α .

Therefore, a dual problem to ridge regression is:

max
α∈Rn

q(α) = max
α∈Rn

[
− 1

4λ
α>(XX> + λnI)α− y>α

]
.

Application to ridge logistic regression. Now R(u) =
∑n

i=1
1
n

log(1+e−yiui),
and `i(ui) = 1

n
log(1 + e−yiui). We have

`∗i (αi) = max
ui∈R

[
αiui −

1

n
log(1 + e−yiui)

]
=

1

n
max
ui∈R

[
log

enαiui

1 + e−yiui

]
=

1

n
max
ui∈R

[
log

1

e−nαiui + e−(yi+nαi)ui

]
= − 1

n
min
ui∈R

log
[
e−nαiui + e−(yi+nαi)ui

]
= − 1

n
log

[
min
ui∈R

[
e−nαiui + e−(yi+nαi)ui

]]
= − 1

n
log

[
min
ui∈R

[
e(yiui)·(−nyiαi) + e(yiui)·(−nyiαi−1)

]]
= − 1

n
log

[
min
ti∈R+

[
tpii + tpi−1i

]]
,

where we have changed the optimization variable from ui ∈ R to ti = eyiui ∈ R+,
and denoted

pi := −nyiαi . (17)
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Note that in the deduction, we have frequently used the fact that y2i = 1 since yi ∈
{−1,+1}, and max(−g) = −min g, and that exp(·) and log(·) are monotonically
increasing functions.

Claim: for any a that is not a function of x, we have

min
x>0

[
xa + xa−1

]
=

{ 1
aa(1−a)1−a if 0 < a < 1 ,

0 otherwise.

The claim can be easily verified. Using the claim,

`∗i (αi) =

{
1
n

(pi log pi + (1− pi) log(1− pi)) if 0 < pi < 1 ,
+∞ otherwise.

By (16), we have

R∗(α) =

{
1
n

∑n
i=1 (pi log pi + (1− pi) log(1− pi)) if 0 < pi < 1 , i = 1, . . . , n ,

+∞ otherwise.

By (15) and plugging (17) back in, we have a dual problem to ridge logistic
regression:

maxα∈Rn − 1
4λ

∑n
i=1

∑n
j=1 αiαjx

>
i xj

− 1
n

∑n
i=1 (−nyiαi log(−nyiαi) + (1 + nyiαi) log(1 + nyiαi))

s.t. − 1
n
< yiαi < 0 , i = 1, . . . , n,

where xi ∈ Rp, i = 1, . . . , n, are the row vectors of X ∈ Rn×p.
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