
Practical session: Introduction to SVM in R

Jean-Philippe Vert

November 23, 2015

In this session you will

• Learn how manipulate a SVM in R with the package kernlab

• Observe the effect of changing the C parameter and the kernel

• Test a SVM classifier for cancer diagnosis from gene expression data

1 Linear SVM

Here we generate a toy dataset in 2D, and learn how to train and test a SVM.

1.1 Generate toy data

First generate a set of positive and negative examples from 2 Gaussians.

n <- 150 #number of data points

p <- 2 # dimension

sigma <- 1 # variance of the distribution

meanpos <- 0 # centre of the distribution of positive examples

meanneg <- 3 # centre of the distribution of negative examples

npos <- round(n / 2) # number of positive examples

nneg <- n - npos # number of negative examples

Generate the positive and negative examples

xpos <- matrix(rnorm(npos * p, mean = meanpos, sd = sigma), npos, p)

xneg <- matrix(rnorm(nneg * p, mean = meanneg, sd = sigma), npos, p)

x <- rbind(xpos, xneg)

Generate the labels

y <- matrix(c(rep(1, npos), rep(-1, nneg)))

Visualize the data

plot(x, col = ifelse(y > 0, 1, 2))

legend("topleft", c("Positive", "Negative"), col = seq(2), pch = 1, text.col = seq(2))

1

1.1 Generate toy data 1 LINEAR SVM

−2 0 2 4

−
2

0
2

4
6

x[,1]

x[
,2

]

Positive
Negative

Now we split the data into a training set (80%) and a test set (20%)

Prepare a training and a test set

ntrain <- round(n * 0.8) # number of training examples

tindex <- sample(n, ntrain) # indices of training samples

xtrain <- x[tindex,]

xtest <- x[-tindex,]

ytrain <- y[tindex]

ytest <- y[-tindex]

istrain <- rep(0, n)

istrain[tindex] <- 1

Visualize

plot(x, col = ifelse(y > 0, 1, 2), pch = ifelse(istrain == 1,1,2))

legend("topleft", c("Positive Train", "Positive Test", "Negative Train", "Negative Test"), col = c(1, 1, 2, 2), pch = c(1, 2, 1, 2), text.col=c(1,1,2,2))

2

1.2 Train a SVM 1 LINEAR SVM

−2 0 2 4

−
2

0
2

4
6

x[,1]

x[
,2

]

Positive Train
Positive Test
Negative Train
Negative Test

1.2 Train a SVM

Now we train a linear SVM with parameter C=100 on the training set.

load the kernlab package

install.packages("kernlab")

library(kernlab)

train the SVM

svp <- ksvm(xtrain, ytrain, type = "C-svc", kernel = "vanilladot", C=100, scaled=c())

#Look and understand what svp contains

General summary

svp

Attributes that you can access

attributes(svp)

For example, the support vectors

alpha(svp)

alphaindex(svp)

b(svp)

3

1.3 Predict with a SVM 1 LINEAR SVM

Use the built-in function to pretty-plot the classifier

plot(svp, data = xtrain)

QUESTION1 - Write a function plotlinearsvm=function(svp,xtrain) to plot the points and the
decision boundaries of a linear SVM, as in Figure 1. To add a straight line to a plot, you may
use the function abline.

1.3 Predict with a SVM

Now we can use the trained SVM to predict the label of points in the test set, and we analyze the results
using variant metrics.

Predict labels on test

ypred <- predict(svp, xtest)

table(ytest, ypred)

4

1.4 Cross-validation 1 LINEAR SVM

Compute accuracy

sum(ypred == ytest) / length(ytest)

Compute at the prediction scores

ypredscore <- predict(svp, xtest, type = "decision")

Check that the predicted labels are the signs of the scores

table(ypredscore > 0, ypred)

Package to compute ROC curve, precision-recall etc...

install.packages("ROCR")

library(ROCR)

Loading required package: gplots

##

Attaching package: ’gplots’

##

The following object is masked from ’package:stats’:

##

lowess

pred <- prediction(ypredscore, ytest)

Plot ROC curve

perf <- performance(pred, measure = "tpr", x.measure = "fpr")

plot(perf)

Plot precision/recall curve

perf <- performance(pred, measure = "prec", x.measure = "rec")

plot(perf)

Plot accuracy as function of threshold

perf <- performance(pred, measure = "acc")

plot(perf)

1.4 Cross-validation

Instead of fixing a training set and a test set, we can improve the quality of these estimates by running k-fold
cross-validation. We split the training set in k groups of approximately the same size, then iteratively train
a SVM using k - 1 groups and make prediction on the group which was left aside. When k is equal to the
number of training points, we talk of leave-one-out (LOO) cross-validatin. To generate a random split of n
points in k folds, we can for example create the following function:

cv.folds <- function(y, folds = 3){
randomly split the n samples into folds

split(sample(length(y)), rep(1:folds, length = length(y)))

}

QUESTION2 - Write a function cv.ksvm = function(x, y, folds = 3,...) which returns a vector
ypred of predicted decision score for all points by k-fold cross-validation

QUESTION3 - Compute the various performance of the SVM by 5-fold cross-validation. Al-
ternatively, the ksvm function can automatically compute the k-fold cross-validation accuracy:

5

1.5 Effect of C 1 LINEAR SVM

svp <- ksvm(x, y, type = "C-svc", kernel = "vanilladot", C = 100, scaled=c(), cross = 5)

print(cross(svp))

print(error(svp))

QUESTION4 - Compare the 5-fold CV estimated by your function and ksvm.

1.5 Effect of C

The C parameters balances the trade-off between having a large margin and separating the positive and
unlabeled on the training set. It is important to choose it well to have good generalization.

QUESTION5 - Plot the decision functions of SVM trained on the toy examples for different
values of C in the range 2seq(−10,14). To look at the different plots you can use the function
par(ask=T) that will ask you to press a key between successive plots. Alternatively, you can
use par(mfrow = c(5,5)) to see all the plots in the same window

QUESTION6 - Plot the 5-fold cross-validation error as a function of C.

QUESTION7 - Do the same on data with more overlap between the two classes, e.g., re-
generate toy data with meanneg being 1.

6

2 NONLINEAR SVM

2 Nonlinear SVM

Sometimes linear SVM are not enough. For example, generate a toy dataset where positive and negative
examples are mixture of two Gaussians which are not linearly separable.

QUESTION8 - Make a toy example that looks like Figure 2, and test a linear SVM with
different values of C.

To solve this problem, we should instead use a nonlinear SVM. This is obtained by simply changing the
kernel parameter. For example, to use a Gaussian RBF kernel with σ = 1 and C = 1:

Train a nonlinear SVM

svp <- ksvm(x, y, type = "C-svc", kernel="rbf", kpar = list(sigma = 1), C = 1)

Visualize it

plot(svp, data = x)

You should obtain something that look like Figure 3. Much better than the linear SVM, no? The nonlinear
SVM has now two parameters: σ and C. Both play a role in the generalization capacity of the SVM.

QUESTION9 - Visualize and compute the 5-fold cross-validation error for different values of
C and σ. Observe their influence.

7

2 NONLINEAR SVM

A useful heuristic to choose σ is implemented in kernlab. It is based on the quantiles of the distances between
the training point.

Train a nonlinear SVM with automatic selection of sigma by heuristic

svp <- ksvm(x, y, type = "C-svc", kernel = "rbf", C = 1)

Visualize it

plot(svp, data = x)

QUESTION10 - Train a nonlinear SVM with various of C with automatic determination of σ.
In fact, many other nonlinear kernels are implemented. Check the documentation of kernlab
to see them: ?kernels

QUESTION11 - Test the polynomial, hyperbolic tangent, Laplacian, Bessel and ANOVA ker-
nels on the toy examples.

8

3 APPLICATION: CANCER DIAGNOSIS FROM GENE EXPRESSION DATA

3 Application: cancer diagnosis from gene expression data

As a real-world application, let us test the ability of SVM to predict the class of a tumour from gene ex-
pression data. We use a publicly available dataset of gene expression data for 128 different individuals with
acute lymphoblastic leukemia (ALL).

Load the ALL dataset

library(ALL)

Loading required package: Biobase

Loading required package: BiocGenerics

Loading required package: parallel

##

Attaching package: ’BiocGenerics’

##

The following objects are masked from ’package:parallel’:

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,

parLapplyLB, parRapply, parSapply, parSapplyLB

##

The following object is masked from ’package:stats’:

##

xtabs

##

The following objects are masked from ’package:base’:

##

anyDuplicated, append, as.data.frame, as.vector, cbind,

colnames, do.call, duplicated, eval, evalq, Filter, Find, get,

intersect, is.unsorted, lapply, Map, mapply, match, mget,

order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,

rbind, Reduce, rep.int, rownames, sapply, setdiff, sort,

table, tapply, union, unique, unlist, unsplit

##

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages ’citation("pkgname")’.

data(ALL)

Inspect them

?ALL

show(ALL)

print(summary(pData(ALL)))

Here we focus on predicting the type of the disease (B-cell or T-cell). We get the expression data and disease
type as follows

9

3 APPLICATION: CANCER DIAGNOSIS FROM GENE EXPRESSION DATA

x <- t(exprs(ALL))

y <- substr(ALL$BT,1,1)

QUESTION12 - Test the ability of a SVM to predict the class of the disease from gene ex-
pression. Check the influence of the parameters.

Finally, we may want to predict the type and stage of the diseases. We are then confronted with a multi-class
classification problem, since the variable to predict can take more than two values:

y <- ALL$BT

print(y)

[1] B2 B2 B4 B1 B2 B1 B1 B1 B2 B2 B3 B3 B3 B2 B3 B B2 B3 B2 B3 B2 B2 B2

[24] B1 B1 B2 B1 B2 B1 B2 B B B2 B2 B2 B1 B2 B2 B2 B2 B2 B4 B4 B2 B2 B2

[47] B4 B2 B1 B2 B2 B3 B4 B3 B3 B3 B4 B3 B3 B1 B1 B1 B1 B3 B3 B3 B3 B3 B3

[70] B3 B3 B1 B3 B1 B4 B2 B2 B1 B3 B4 B4 B2 B2 B3 B4 B4 B4 B1 B2 B2 B2 B1

[93] B2 B B T T3 T2 T2 T3 T2 T T4 T2 T3 T3 T T2 T3 T2 T2 T2 T1 T4 T

[116] T2 T3 T2 T2 T2 T2 T3 T3 T3 T2 T3 T2 T

Levels: B B1 B2 B3 B4 T T1 T2 T3 T4

Fortunately, kernlab implements automatically multi-class SVM by an all-versus-all strategy to combine
several binary SVM.

QUESTION13 - Test the ability of a SVM to predict the class and the stage of the disease
from gene expression.

10

	Linear SVM
	Generate toy data
	Train a SVM
	Predict with a SVM
	Cross-validation
	Effect of C

	Nonlinear SVM
	Application: cancer diagnosis from gene expression data

