Practical session: Introduction to SVM in R

Jean-Philippe Vert

November 23, 2015

In this session you will

e Learn how manipulate a SVM in R with the package kernlab
e Observe the effect of changing the C parameter and the kernel

e Test a SVM classifier for cancer diagnosis from gene expression data

1 Linear SVM

Here we generate a toy dataset in 2D, and learn how to train and test a SVM.

1.1 Generate toy data
First generate a set of positive and negative examples from 2 Gaussians.

n <- 150 #number of data points

P <- 2 # dimension

sigma <- 1 # wariance of the distribution

meanpos <- 0 # centre of the distribution of positive examples
meanneg <- 3 # centre of the distribution of mnegative examples
npos <- round(n / 2) # number of positive ezamples

nneg <- n - npos # number of negative examples

Generate the postitive and negative examples
xpos <- matrix(rnorm(npos * p, mean = meanpos, sd
xneg <- matrix(rnorm(nneg * p, mean = meanneg, sd
x <- rbind(xpos, xneg)

sigma), npos, p)
sigma), npos, p)

Generate the labels
y <- matrix(c(rep(l, npos), rep(-1, nneg)))

Visualize the data
plot(x, col = ifelse(y > 0, 1, 2))
legend ("topleft", c("Positive", "Negative"), col = seq(2), pch = 1, text.col = seq(2))

1.1 Generate toy data 1 LINEAR SVM

© A . o
O Positive
o Negative ° o
e © 3
< - ® ~O o
o O o)
5 S @
o <© OGDO o
°© % 4 00,%°% & &®0°
10 Se Y @)
— N — & o
N o © o 2 o S
Oo 62 o
000 8 00
o _ 0.0 %8 5 © o
) Sad P © % o
o O (e} @ OO (@)
(@] o o (p o0
O O @]
(I\l _| @]
@]
[[[[
-2 0 2 4
X[,1]
Now we split the data into a training set (80%) and a test set (20%)
ntrain <- round(n * 0.8)
tindex <- sample(n, ntrain)
xtrain <- x[tindex,]
xtest <- x[-tindex,]
ytrain <- y[tindex]
ytest <- y[-tindex]
istrain <- rep(0, n)
istrain[tindex] <- 1
plot(x, col = ifelse(y > 0, 1, 2), pch = ifelse(istrain == 1,1,2))
legend ("topleft", c("Positive Train", "Positive Test", "Negative Train", "Negative Test"), col

c(1, 1

1.2 Train a SVM 1 LINEAR SVM

o] .- . - O
O Positive Train
A Positive Test 8 o
o Negative Train 5 8 . 3
< A ;) A
Negative Test CAOAA g @ e}
A RO a0
o o © oA % o ©
P90" Pgo RO
)
l(}l o @] A % A o o
PS OgD o) o @] o o o)
O O
O © OA&O@ZSngB o 40 @)
® & o B, 0
o O JAN OO FAN
O O o]
(I\l | ©)
©)
| | | |
-2 0 2 4
X[,1]
1.2 Train a SVM
Now we train a linear SVM with parameter C=100 on the training set.
library(kernlab)
svp <- ksvm(xtrain, ytrain, type = "C-svc", kernel = "vanilladot", C=100, scaled=c())
SVp
attributes(svp)
alpha(svp)
alphaindex (svp)
b(svp)

1.3 Predict with a SVM 1 LINEAR SVM

plot(svp, data = xtrain)

QUESTIONI1 - Write a function plotlinearsvin=function(svp,xtrain) to plot the points and the
decision boundaries of a linear SVM, as in Figure 1. To add a straight line to a plot, you may
use the function abline.

yr

xr

Figure 1: A linear SVM with decision boundary f{zx) = 0. Dotted lines correspond to the level
sets f{zx) =1 and f(x) = 1 Support vectors are in black.

1.3 Predict with a SVM

Now we can use the trained SVM to predict the label of points in the test set, and we analyze the results
using variant metrics.

ypred <- predict(svp, xtest)
table(ytest, ypred)

1.4 Cross-validation

1 LINEAR SVM

sum(ypred == ytest) / length(ytest)

ypredscore <- predict(svp, xtest, type = "decision")

table(ypredscore > 0, ypred)

library (ROCR)

Loading required package: gplots

##

Attaching package: ’gplots’

##

The following object is masked from ’package:stats’:
##

lowess

pred <- prediction(ypredscore, ytest)

perf <- performance(pred, measure = "tpr", x.measure = "fpr")
plot(perf)

perf <- performance(pred, measure = "prec", x.measure = "rec")
plot(perf)

perf <- performance(pred, measure = "acc"

plot(perf)

1.4 Cross-validation

Instead of fixing a training set and a test set, we can improve the quality of these estimates by running k-fold
cross-validation. We split the training set in k groups of approximately the same size, then iteratively train
a SVM using k - 1 groups and make prediction on the group which was left aside. When k is equal to the
number of training points, we talk of leave-one-out (LOO) cross-validatin. To generate a random split of n
points in k folds, we can for example create the following function:

cv.folds <- function(y, folds = 3){

split(sample(length(y)), rep(l:folds, length = length(y)))

}

QUESTION2 - Write a function cv.ksvin = function(x, y, folds = 3,...) which returns a vector

ypred of predicted decision score for all points by k-fold cross-validation

QUESTIONS3 - Compute the various performance of the SVM by 5-fold cross-validation. Al-
ternatively, the ksvim function can automatically compute the k-fold cross-validation accuracy:

1.5 Effect of C 1 LINEAR SVM

svp <- ksvm(x, y, type = "C-svc", kernel = "vanilladot", C = 100, scaled=c(), cross = 5)
print (cross(svp))
print (error (svp))

QUESTION4 - Compare the 5-fold CV estimated by your function and ksvm.

1.5 Effect of C

The C parameters balances the trade-off between having a large margin and separating the positive and
unlabeled on the training set. It is important to choose it well to have good generalization.

QUESTIONS - Plot the decision functions of SVM trained on the toy examples for different
values of C in the range 2°¢9(—10.14) To look at the different plots you can use the function
par(ask=T) that will ask you to press a key between successive plots. Alternatively, you can
use par(mfrow = c(5,5)) to see all the plots in the same window

QUESTIONS®G - Plot the 5-fold cross-validation error as a function of C.

QUESTIONY?Y - Do the same on data with more overlap between the two classes, e.g., re-
generate toy data with meanneg being 1.

2 NONLINEAR SVM

2 Nonlinear SVM

Sometimes linear SVM are not enough. For example, generate a toy dataset where positive and negative
examples are mixture of two Gaussians which are not linearly separable.

QUESTIONS - Make a toy example that looks like Figure 2, and test a linear SVM with
different values of C.

© Positive o
4 Negative fat o
A o
Aa %o
= & e O o o
N 0,° %
A - @
Y A 2 o
IR & 4 L
a AA R
it iy Fay &}‘\ & [s]
o
i & o
N ray o o
°.0
[+ Faly
C: o A []
o a A
° o ©°¢ & “
o 000 o a f A
o — Fa Y
o o Fal
o o & £ A A
0 o A Fal
DO (] o
o o A A A
s © 00 A fa
o
]
[+]
T T T T
-2 1] 2 4
x1

Figure 2: A toy examples where linear SVM will fail.

To solve this problem, we should instead use a nonlinear SVM. This is obtained by simply changing the
kernel parameter. For example, to use a Gaussian RBF kernel with o =1 and C = 1:

svp <- ksvm(x, y, type = "C-svc", kernel="rbf", kpar = list(sigma = 1), C = 1)

plot(svp, data = x)

You should obtain something that look like Figure 3. Much better than the linear SVM, no? The nonlinear
SVM has now two parameters: o and C. Both play a role in the generalization capacity of the SVM.

QUESTIONS - Visualize and compute the 5-fold cross-validation error for different values of
C and o. Observe their influence.

2 NONLINEAR SVM

SVM classification plot

%1

Figure 3: A nonlinear SVM with Gaussian RBF kernel.

A useful heuristic to choose ¢ is implemented in kernlab. It is based on the quantiles of the distances between
the training point.

Train a nonlinear SVM with automatic selection of sigma by heuristic
svp <- ksvm(x, y, type = "C-svc", kernel = "rbf", C = 1)

Visualize it
plot(svp, data = x)

QUESTION10 - Train a nonlinear SVM with various of C with automatic determination of o.
In fact, many other nonlinear kernels are implemented. Check the documentation of kernlab
to see them: 7kernels

QUESTION11 - Test the polynomial, hyperbolic tangent, Laplacian, Bessel and ANOVA ker-
nels on the toy examples.

3 APPLICATION: CANCER DIAGNOSIS FROM GENE EXPRESSION DATA

3 Application: cancer diagnosis from gene expression data

As a real-world application, let us test the ability of SVM to predict the class of a tumour from gene ex-
pression data. We use a publicly available dataset of gene expression data for 128 different individuals with
acute lymphoblastic leukemia (ALL).

library (ALL)

Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel

##

Attaching package: ’BiocGenerics’

##

The following objects are masked from ’package:parallel’:
##

clusterApply, clusterApplylB, clusterCall, clusterEvalQ,
clusterEzport, clusterMap, pardpply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB

##

The following object is masked from ’package:stats’:

##

ztabs

##

The following objects are masked from ’package:base’:

##

anyDuplicated, append, as.data.frame, as.vector, cbind,

colnames, do.call, duplicated, eval, evalq, Filter, Find, get,
intersect, is.unsorted, lapply, Map, mapply, match, mget,

order, paste, pmaz, pmazx.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rep.int, rownames, sapply, setdiff, sort,

table, tapply, union, unique, unlist, unsplit

##

Welcome to Btoconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase"”)’, and for packages ’citation("pkgname")’.
data(ALL)

7ALL

show (ALL)

print (summary (pData(ALL)))

Here we focus on predicting the type of the disease (B-cell or T-cell). We get the expression data and disease
type as follows

3 APPLICATION: CANCER DIAGNOSIS FROM GENE EXPRESSION DATA

x <- t(exprs(ALL))
y <- substr(ALL$BT,1,1)

QUESTION12 - Test the ability of a SVM to predict the class of the disease from gene ex-
pression. Check the influence of the parameters.

Finally, we may want to predict the type and stage of the diseases. We are then confronted with a multi-class
classification problem, since the variable to predict can take more than two values:

y <- ALL$BT
print (y)

[1] B2 B2 B4 B1 B2 B1 B1 B1 B2 B2 B3 B3 B3 B2 B3 B B2 B3 B2 B3 B2 B2 B2
[24] B1 B1 B2 B1 B2 B1 B2 B B B2 B2 B2 Bl B2 B2 B2 B2 B2 B4 B4 B2 B2 B2
[47] B4 B2 B1 B2 B2 B3 B4 B3 B3 B3 B4 B3 B3 Bl B1 B1 B1 B3 B3 B3 B3 B3 B3
[70] B3 B3 B1 B3 Bl B4 B2 B2 B1 B3 B4 B4 B2 B2 B3 B4 B4 B4 B1 B2 B2 B2 B1
[931 B2 B B T T3 T2 T2 T3 T2 T T4 T2 T3 T3 T T2 T3 T2 T2 T2 T1 T4 T
[116] T2 T3 T2 T2 T2 T2 T3 T3 T3 T2 T3 T2 T

Levels: B B1 B2 B3 B4 T T1 T2 T3 T4

Fortunately, kernlab implements automatically multi-class SVM by an all-versus-all strategy to combine
several binary SVM.

QUESTION13 - Test the ability of a SVM to predict the class and the stage of the disease
from gene expression.

10

	Linear SVM
	Generate toy data
	Train a SVM
	Predict with a SVM
	Cross-validation
	Effect of C

	Nonlinear SVM
	Application: cancer diagnosis from gene expression data

