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In this session you will

• Learn how manipulate a SVM in R with the package kernlab

• Observe the effect of changing the C parameter and the kernel

• Test a SVM classifier for cancer diagnosis from gene expression data

1 Linear SVM

Here we generate a toy dataset in 2D, and learn how to train and test a SVM.

1.1 Generate toy data

First generate a set of positive and negative examples from 2 Gaussians.

n <- 150 #number of data points

p <- 2 # dimension

sigma <- 1 # variance of the distribution

meanpos <- 0 # centre of the distribution of positive examples

meanneg <- 3 # centre of the distribution of negative examples

npos <- round(n / 2) # number of positive examples

nneg <- n - npos # number of negative examples

# Generate the positive and negative examples

xpos <- matrix(rnorm(npos * p, mean = meanpos, sd = sigma), npos, p)

xneg <- matrix(rnorm(nneg * p, mean = meanneg, sd = sigma), npos, p)

x <- rbind(xpos, xneg)

# Generate the labels

y <- matrix(c(rep(1, npos), rep(-1, nneg)))

# Visualize the data

plot(x, col = ifelse(y > 0, 1, 2))

legend("topleft", c("Positive", "Negative"), col = seq(2), pch = 1, text.col = seq(2))
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1.1 Generate toy data 1 LINEAR SVM
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Now we split the data into a training set (80%) and a test set (20%)

# Prepare a training and a test set

ntrain <- round(n * 0.8) # number of training examples

tindex <- sample(n, ntrain) # indices of training samples

xtrain <- x[tindex, ]

xtest <- x[-tindex, ]

ytrain <- y[tindex]

ytest <- y[-tindex]

istrain <- rep(0, n)

istrain[tindex] <- 1

# Visualize

plot(x, col = ifelse(y > 0, 1, 2), pch = ifelse(istrain == 1,1,2))

legend("topleft", c("Positive Train", "Positive Test", "Negative Train", "Negative Test"), col = c(1, 1, 2, 2), pch = c(1, 2, 1, 2), text.col=c(1,1,2,2))
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1.2 Train a SVM 1 LINEAR SVM
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1.2 Train a SVM

Now we train a linear SVM with parameter C=100 on the training set.

# load the kernlab package

# install.packages("kernlab")

library(kernlab)

# train the SVM

svp <- ksvm(xtrain, ytrain, type = "C-svc", kernel = "vanilladot", C=100, scaled=c())

#Look and understand what svp contains

# General summary

svp

# Attributes that you can access

attributes(svp)

# For example, the support vectors

alpha(svp)

alphaindex(svp)

b(svp)

3



1.3 Predict with a SVM 1 LINEAR SVM

# Use the built-in function to pretty-plot the classifier

plot(svp, data = xtrain)

QUESTION1 - Write a function plotlinearsvm=function(svp,xtrain) to plot the points and the
decision boundaries of a linear SVM, as in Figure 1. To add a straight line to a plot, you may
use the function abline.

1.3 Predict with a SVM

Now we can use the trained SVM to predict the label of points in the test set, and we analyze the results
using variant metrics.

# Predict labels on test

ypred <- predict(svp, xtest)

table(ytest, ypred)
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1.4 Cross-validation 1 LINEAR SVM

# Compute accuracy

sum(ypred == ytest) / length(ytest)

# Compute at the prediction scores

ypredscore <- predict(svp, xtest, type = "decision")

# Check that the predicted labels are the signs of the scores

table(ypredscore > 0, ypred)

# Package to compute ROC curve, precision-recall etc...

# install.packages("ROCR")

library(ROCR)

## Loading required package: gplots

##

## Attaching package: ’gplots’

##

## The following object is masked from ’package:stats’:

##

## lowess

pred <- prediction(ypredscore, ytest)

# Plot ROC curve

perf <- performance(pred, measure = "tpr", x.measure = "fpr")

plot(perf)

# Plot precision/recall curve

perf <- performance(pred, measure = "prec", x.measure = "rec")

plot(perf)

# Plot accuracy as function of threshold

perf <- performance(pred, measure = "acc")

plot(perf)

1.4 Cross-validation

Instead of fixing a training set and a test set, we can improve the quality of these estimates by running k-fold
cross-validation. We split the training set in k groups of approximately the same size, then iteratively train
a SVM using k - 1 groups and make prediction on the group which was left aside. When k is equal to the
number of training points, we talk of leave-one-out (LOO) cross-validatin. To generate a random split of n
points in k folds, we can for example create the following function:

cv.folds <- function(y, folds = 3){
## randomly split the n samples into folds

split(sample(length(y)), rep(1:folds, length = length(y)))

}

QUESTION2 - Write a function cv.ksvm = function(x, y, folds = 3,...) which returns a vector
ypred of predicted decision score for all points by k-fold cross-validation

QUESTION3 - Compute the various performance of the SVM by 5-fold cross-validation. Al-
ternatively, the ksvm function can automatically compute the k-fold cross-validation accuracy:
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1.5 Effect of C 1 LINEAR SVM

svp <- ksvm(x, y, type = "C-svc", kernel = "vanilladot", C = 100, scaled=c(), cross = 5)

print(cross(svp))

print(error(svp))

QUESTION4 - Compare the 5-fold CV estimated by your function and ksvm.

1.5 Effect of C

The C parameters balances the trade-off between having a large margin and separating the positive and
unlabeled on the training set. It is important to choose it well to have good generalization.

QUESTION5 - Plot the decision functions of SVM trained on the toy examples for different
values of C in the range 2seq(−10,14). To look at the different plots you can use the function
par(ask=T) that will ask you to press a key between successive plots. Alternatively, you can
use par(mfrow = c(5,5)) to see all the plots in the same window

QUESTION6 - Plot the 5-fold cross-validation error as a function of C.

QUESTION7 - Do the same on data with more overlap between the two classes, e.g., re-
generate toy data with meanneg being 1.
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2 NONLINEAR SVM

2 Nonlinear SVM

Sometimes linear SVM are not enough. For example, generate a toy dataset where positive and negative
examples are mixture of two Gaussians which are not linearly separable.

QUESTION8 - Make a toy example that looks like Figure 2, and test a linear SVM with
different values of C.

To solve this problem, we should instead use a nonlinear SVM. This is obtained by simply changing the
kernel parameter. For example, to use a Gaussian RBF kernel with σ = 1 and C = 1:

# Train a nonlinear SVM

svp <- ksvm(x, y, type = "C-svc", kernel="rbf", kpar = list(sigma = 1), C = 1)

# Visualize it

plot(svp, data = x)

You should obtain something that look like Figure 3. Much better than the linear SVM, no? The nonlinear
SVM has now two parameters: σ and C. Both play a role in the generalization capacity of the SVM.

QUESTION9 - Visualize and compute the 5-fold cross-validation error for different values of
C and σ. Observe their influence.
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2 NONLINEAR SVM

A useful heuristic to choose σ is implemented in kernlab. It is based on the quantiles of the distances between
the training point.

# Train a nonlinear SVM with automatic selection of sigma by heuristic

svp <- ksvm(x, y, type = "C-svc", kernel = "rbf", C = 1)

# Visualize it

plot(svp, data = x)

QUESTION10 - Train a nonlinear SVM with various of C with automatic determination of σ.
In fact, many other nonlinear kernels are implemented. Check the documentation of kernlab
to see them: ?kernels

QUESTION11 - Test the polynomial, hyperbolic tangent, Laplacian, Bessel and ANOVA ker-
nels on the toy examples.
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3 APPLICATION: CANCER DIAGNOSIS FROM GENE EXPRESSION DATA

3 Application: cancer diagnosis from gene expression data

As a real-world application, let us test the ability of SVM to predict the class of a tumour from gene ex-
pression data. We use a publicly available dataset of gene expression data for 128 different individuals with
acute lymphoblastic leukemia (ALL).

# Load the ALL dataset

library(ALL)

## Loading required package: Biobase

## Loading required package: BiocGenerics

## Loading required package: parallel

##

## Attaching package: ’BiocGenerics’

##

## The following objects are masked from ’package:parallel’:

##

## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

## clusterExport, clusterMap, parApply, parCapply, parLapply,

## parLapplyLB, parRapply, parSapply, parSapplyLB

##

## The following object is masked from ’package:stats’:

##

## xtabs

##

## The following objects are masked from ’package:base’:

##

## anyDuplicated, append, as.data.frame, as.vector, cbind,

## colnames, do.call, duplicated, eval, evalq, Filter, Find, get,

## intersect, is.unsorted, lapply, Map, mapply, match, mget,

## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,

## rbind, Reduce, rep.int, rownames, sapply, setdiff, sort,

## table, tapply, union, unique, unlist, unsplit

##

## Welcome to Bioconductor

##

## Vignettes contain introductory material; view with

## ’browseVignettes()’. To cite Bioconductor, see

## ’citation("Biobase")’, and for packages ’citation("pkgname")’.

data(ALL)

# Inspect them

?ALL

show(ALL)

print(summary(pData(ALL)))

Here we focus on predicting the type of the disease (B-cell or T-cell). We get the expression data and disease
type as follows
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3 APPLICATION: CANCER DIAGNOSIS FROM GENE EXPRESSION DATA

x <- t(exprs(ALL))

y <- substr(ALL$BT,1,1)

QUESTION12 - Test the ability of a SVM to predict the class of the disease from gene ex-
pression. Check the influence of the parameters.

Finally, we may want to predict the type and stage of the diseases. We are then confronted with a multi-class
classification problem, since the variable to predict can take more than two values:

y <- ALL$BT

print(y)

## [1] B2 B2 B4 B1 B2 B1 B1 B1 B2 B2 B3 B3 B3 B2 B3 B B2 B3 B2 B3 B2 B2 B2

## [24] B1 B1 B2 B1 B2 B1 B2 B B B2 B2 B2 B1 B2 B2 B2 B2 B2 B4 B4 B2 B2 B2

## [47] B4 B2 B1 B2 B2 B3 B4 B3 B3 B3 B4 B3 B3 B1 B1 B1 B1 B3 B3 B3 B3 B3 B3

## [70] B3 B3 B1 B3 B1 B4 B2 B2 B1 B3 B4 B4 B2 B2 B3 B4 B4 B4 B1 B2 B2 B2 B1

## [93] B2 B B T T3 T2 T2 T3 T2 T T4 T2 T3 T3 T T2 T3 T2 T2 T2 T1 T4 T

## [116] T2 T3 T2 T2 T2 T2 T3 T3 T3 T2 T3 T2 T

## Levels: B B1 B2 B3 B4 T T1 T2 T3 T4

Fortunately, kernlab implements automatically multi-class SVM by an all-versus-all strategy to combine
several binary SVM.

QUESTION13 - Test the ability of a SVM to predict the class and the stage of the disease
from gene expression.
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