
The conventional approach to cancer therapy has been to provide treat-
ment according to the organ or tissue in which the cancer originates. 
This approach was appropriate when there was only a rudimentary 
understanding of the molecular origins of cancer and the different 
intracellular signalling pathways that are perturbed in the various types 
of cancer (such as in breast cancer or lung cancer). In the past two 
to three decades, however, the genetic events that lead to cancer have 
been dissected, and it has become clear that cancer develops as a result 
of multiple genetic defects and that individuals with the same type of 
cancer often have dissimilar genetic defects in their tumours. This find-
ing explains why patients who seem to have similar cancers respond in a 
heterogeneous manner to anticancer agents and shows clearly the huge 
obstacle to providing effective treatments for cancer. 

In the past decade, cancer therapy has slowly but steadily begun to 
shift from a ‘one size fits all’ approach to a more personalized approach, 
in which each patient is treated according to the specific genetic defects 
in the tumour. Such an individualized approach requires the discovery 
and development of biomarkers (biological indicators) that help doctors 
to decide which patients to treat (known as prognostic biomarkers) and 
which therapy is most likely to be effective for a given patient (known as 
predictive biomarkers). More specifically, prognostic biomarkers predict 
the clinical outcome for a patient if no anticancer drugs are adminis-
tered, whereas predictive biomarkers predict the outcome of a specific 
therapy for a patient. An example of why such biomarkers are needed 
to improve patient management is that, for some tumours, resection 
(that is, surgical removal) of the primary tumour might be curative; 
therefore, systemic therapy to eliminate any remaining tumour cells 
(also known as adjuvant therapy) would not be needed. By contrast, for 
more malignant primary tumours, aggressive systemic therapy, often 
chemotherapy, might be required after resection, in order to reduce the 
risk of the tumour recurring. However, the distinction between these 
is often unclear, so prognostic biomarkers that enable the likelihood of 
recurrence to be determined are urgently needed in the clinic. 

In the case of breast cancer, large meta-analyses have shown that recur-
rence is likely in 20–30% of young women with early-stage (lymph-node-
negative) breast cancer who undergo only surgery and localized radiation 
treatment1. But, in the United States, 85–95% of women with this type 
of cancer receive adjuvant chemotherapy, mostly because conventional 
clinicopathological parameters fail to identify reliably those patients who 

are likely to relapse. Therefore, 55–75% of women with early-stage breast 
cancer in the United States undergo a toxic therapy from which they will 
not benefit but will experience the side effects. So it is not surprising that 
the initial attempts to discover clinically relevant prognostic biomarkers 
have focused on breast cancer (discussed later). 

The advent of DNA-microarray technology in the 1990s (refs 2, 3) 
made it possible to assess the expression of tens of thousands of genes in 
a single experiment. Systematic analysis of the gene-expression patterns 
of tumour samples enabled researchers to identify characteristic expres-
sion patterns of groups of genes that are associated with specific tumour 
traits. These patterns are known as gene-expression signatures. 

In this review, we focus on gene-expression signatures as a new class 
of molecular diagnostic test for cancer. We discuss pitfalls in the discov-
ery of gene-expression signatures, how such signatures can be used to 
develop clinically relevant tests and how these tests are likely to affect 
patient management and drug development in the future.

Building gene-expression profiles
The massive parallel quantification of messenger RNA abundance that is 
possible using DNA-microarray technology has enabled genome-wide 
gene-expression data to be collected for large numbers of biological 
specimens. Collecting this unprecedented amount of data (at least for 
biologists) has necessitated the development of new tools to analyse the 
large data sets. In principle, to find connections between the patterns of 
gene expression by tumour cells and the behaviour of these cells, there 
are three approaches: the data-driven approach, the knowledge-driven 
approach and the model-driven approach. 

The most straightforward is the data-driven approach, in which a 
genome-wide analysis of gene expression is carried out, and then cor-
relates between patterns of gene expression and certain tumour traits are 
searched for. The strength of this approach is that it is unbiased: there 
are no assumptions about which genes are likely to be involved in the 
process of interest. For example, in a data-driven study of the prognosis 
of patients with breast cancer, little was known about the function of 15 
of the 70 genes that were found to constitute a prognostic gene-expres-
sion signature4. A drawback of this approach is that the outcome relies 
solely on the quality of the data (and the samples).

By contrast, using the knowledge-driven approach, genes that are 
thought to be relevant to a particular cancer trait are selected on the basis 
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of the scientific literature. This approach is often used when only forma-
lin-fixed paraffin-embedded tumour tissue is available. The RNA isolated 
from such tissue is fragmented, and such poor-quality RNA is far from 
ideal for genome-wide quantitative analysis using DNA microarrays. It 
can, however, be analysed by PCR with reverse transcription. In this 
approach, mRNA abundance is measured by using unique pairs of 
oligonucleotide primers that correspond to each gene, a labour-intensive 
process that precludes genome-scale analysis of gene expression. Hence, 
in studies involving formalin-fixed paraffin-embedded material, sets of 
‘likely suspect’ genes are often tested. A drawback of this approach is that 
the outcome is only as good as the state of knowledge: genes that are not 
known to be involved in a process cannot be considered. 

In the model-driven approach, the transcriptional responses of cells 
after exposure to specific stimuli are used to predict tumour traits. For 
example, a gene-expression signature for wound healing has been used 
to predict the survival of individuals with breast cancer 5. Similarly, gene-
expression signatures that reflect the activation of specific oncogenic 
pathways have been used both to determine prognosis and to predict 
responses to anticancer drugs6,7. This approach has the drawback that 
the experimental model used might not accurately reflect the processes 
that occur in tumours.

A comparison of the data-driven approach and the knowledge-driven 
approach applied to a similar problem sheds more light on the advan-
tages and disadvantages of these approaches. If the presence of a certain 
transcription factor is known to affect the prognosis of individuals with 
a particular cancer, then in the knowledge-driven approach to building a 
prognostic gene-expression signature, the gene encoding this transcrip-
tion factor would be incorporated into a prognostic signature. In some 
cancers, however, this gene might be expressed, but its product non-func-
tional (for example, as a result of a missense mutation). For this reason, 
in a data-driven approach, targets downstream of a transcription factor 
of interest are often found to be distinguishing features, rather than the 
gene encoding the transcription factor itself, because the expression of 
these targets provides more relevant information on the activity of the 
transcription factor. As an example, a 16-gene signature for the prognosis 
of breast cancer that was derived from 250 ‘candidate’ genes selected on 
the basis of published studies includes ESR1, which encodes oestrogen 
receptor-α (ER-α; a transcription factor that is expressed by most breast 
cancers)8. By contrast, a set of 70 genes for assessing breast-cancer prog-
nosis (discussed earlier) that was identified by a data-driven approach 
does not include ESR1 itself but includes several genes that are targets 
of ER-α4. 

After large-scale gene-expression data sets have been collected, there 
are two fundamentally different ways to analyse them. One approach 
is to ask whether in a group of samples (for example, tissues from indi-
viduals diagnosed with a particular cancer), there are subgroups (or 
clusters) of samples with similar gene-expression patterns. These simi-
larities in gene expression can be used to classify a cancer into subtypes 
that could have similarities in biological behaviour. This type of data 
analysis is called hierarchical clustering or unsupervised classification9, 
and it has the advantage that additional clinical data are not required. 
For example, hierarchical clustering of breast-cancer specimens10,11 
identified five naturally occurring subtypes (referred to as ‘intrinsic 
subtypes’) of breast cancer that had not been observed previously. Some 
of these intrinsic subtypes differ markedly in their aggressiveness; for 
example, the prognosis for individuals with the subtype called basal-
like breast cancer is significantly worse than that for individuals with 
another subtype, luminal-type breast cancer11,12. 

The second approach to data analysis is known as supervised classifi-
cation. Samples are divided into groups that are known to have different 
clinical end points (for example, recurrence versus no recurrence, and 
drug response versus no drug response), and genes that can correctly 
identify the distinct groups are searched for (Fig. 1). One set of tumours 
(called the training set) is used to identify the genes that discriminate 
between the groups — the gene-expression signature — and then a 
second, independent, set of tumours (called the validation set) is used 
to test how well these genes can classify samples that have not been 

grouped. The situations in which these approaches have been used and 
their relative value are discussed in the next section. 

Prognostic profiles
Initial studies of gene-expression profiling of cancer used simple hier-
archical clustering to identify subtypes among apparently similar can-
cers. A landmark early study identified two distinct subtypes of diffuse 
large B-cell lymphoma (DLBCL) — germinal-centre B-like DLBCL, 
and activated B-like DLBCL — for which the overall survival of patients 
significantly differs13. This was the first in an avalanche of publications 
showing that the molecular classification of tumours on the basis of 

Figure 1 | Predicting disease outcome by using complex gene-expression 
tests. a, Generating a prognostic gene-expression signature by using 
supervised classification. The gene expression of cells in a set of tumours 
of known clinical outcome is analysed by using whole-genome microarrays. 
Colours indicate the level of expression for each gene: red, gene is more 
active than the average for tumours of this type; green, gene is less active 
than average; yellow, gene is equally active; and, black, gene is not 
expressed. The results for each tumour sample are then classified into two 
categories: tumours with a good outcome (no distant metastases developed), 
and tumours with a poor outcome (distant metastases developed). Using 
bioinformatic analysis, genes whose expression is significantly correlated 
with disease outcome are identified, and these are known as prognosis 
reporter genes. An optimal set of genes is then selected from the prognosis 
reporter genes by using bioinformatic algorithms, and the pattern of 
expression of this multigene set is known as a gene-expression signature 
(or classifier). b, The gene-expression signature generated in a is shown 
as a ‘heat map’. The expression of the 70 prognosis reporter genes selected 
as the optimal set (vertical columns) is shown for 78 tumours (horizontal 
lines). So each of the 70 × 78 intersection points of the heat map shows how a 
particular gene is expressed in a given tumour. A red spot indicates that the 
gene is expressed at a higher level than average for tumours of this type, and 
a green spot that the gene is expressed at a lower level. The outcome of the 
disease is shown on the right: white indicates metastasis; black indicates no 
metastasis; and yellow indicates the threshold for metastasis. (Panel adapted, 
with permission, from ref. 4.) 
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gene expression can identify previously undetected and clinically sig-
nificant subtypes of cancer. Even though the gene-expression signatures 
found in these studies uncovered aspects of tumour-cell biology that 
had gone unnoticed, these studies were not designed to find signatures 
identifying subtypes of cancer that result in different prognoses. Their 
main purpose was to establish a molecular classification of tumours on 
the basis of their gene-expression patterns.

In a study that was designed to find a prognostic gene-expression 
signature for breast cancer, gene-expression data from breast-tumour 
samples of known clinical outcome were analysed by using supervised 
classification4. This study yielded the previously mentioned 70-gene sig-
nature for breast-cancer prognosis. Remarkably, when another research 
group independently used a similar approach14, a 76-gene signature was 
identified, but this had only three genes in common with the 70-gene sig-
nature. This finding was interpreted by some to indicate that such gene-
expression signatures are highly unstable15. But, because both of these 
gene-expression signatures could be independently validated in large 
groups of patients16,17, it is more likely that the two signatures use different 
genes to monitor the same biological processes, an idea for which there 
is supporting evidence18,19. Using similar strategies, gene-expression sig-
natures that assess the risk of recurrence of non-small-cell lung cancer20 
and several other cancer types have also been established. 

A combination of a knowledge-based approach and a data-driven 
approach was used to identify the previously mentioned 16-gene sig-
nature for breast-cancer prognosis. First, a set of 250 candidate genes 

was identified and, after analysing the expression of the candidate genes 
in about 400 tumours, 16 genes were selected from this set8. Of all 
the gene-expression signatures for cancer that have been identified, 
only three are commercially available: the 70-gene signature for breast-
cancer prognosis is available under the name MammaPrint (Agendia); 
the 16-gene signature as Oncotype DX (Genomic Health); and a 2-gene 
signature21, which has recently been released, under the name the H/I 
test (AviaraDx). Now that such tests can be used in the clinic, one of the 
major challenges facing oncologists and pathologists is how to integrate 
the information obtained from conventional tests with that from these 
molecular tests (Fig. 2). 

An important question when considering the development of new tests 
is whether prognostic gene-expression profiles are independent of the 
molecularly defined subtypes of cancer. As mentioned earlier, individu-
als with basal-like breast cancers generally have a worse prognosis than 
those with luminal-type breast cancers. Should a separate prognostic sig-
nature therefore be made for the basal-like subtype and the luminal-type 
subtype, or is a signature based on supervised classification of a diverse 
panel of breast tumours equally powerful for assessing the prognosis of 
patients with either subtype? Our studies of tumours from 295 patients 
with breast cancer indicate that within the group of patients who were 
predicted to be at high risk of relapse by using the 70-gene signature, the 
patients with the basal-like subtype have a comparable outcome to those 
with the luminal-type subtype (L.J.v.V., unpublished observations). This 
finding suggests that the prognostic value of the molecular subtyping of 
cancer, as was carried out in the initial gene-expression profiling studies, 
has been surpassed by that of prognostic gene-expression signatures such 
as the 70-gene signature and that the underlying molecular subtype does 
not contain additional crucial information for determining a patient’s 
prognosis. It is possible, however, that patients with the various molecular 
subtypes of cancer respond differently to particular therapies.

Predictive profiles
In the area of predicting responses to particular therapies, gene-expres-
sion profiling studies have not yet delivered on their promise. It seems 
that responses to anticancer drugs are more difficult to predict by using 
molecular tests than prognosis is. One of the main reasons for this dif-
ficulty is that resistance to anticancer agents can result from a variety of 
mechanisms. Consequently, there might not be a gene-expression profile 
that correlates with resistance to a certain drug. This is true for both 
resistance to conventional chemotherapeutic agents, which are often 
pleiotropic, and to newer ‘targeted therapies’, which affect specific com-
ponents of signalling pathways. It should be pointed out, however, that the 
differences between these types of anticancer drug are less marked than 
is generally assumed: some of the conventional chemotherapeutic agents 
(such as topoisomerase inhibitors) target specific enzymes, whereas some 
of the small-molecule-based targeted therapies (such as imatinib mesylate 
and lapatinib) are directed against more than one enzyme. In addition, 
resistance to drugs might result from subtle mutations that do not cause 
gross changes in gene expression, a process that is therefore undetectable 
by gene-expression profiling. 

Another important impediment to the discovery of predictive gene-
expression signatures is that, for genome-wide gene-expression studies, 
large numbers of tumour samples are required (of the order of 100), to 
reduce the probability that associations between gene-expression signa-
tures and therapy outcomes are spurious. An additional consideration 
is that drug-response gene-expression profiles cannot be constructed 
from tumour samples from patients who have undergone adjuvant 
therapy. Patients who do not relapse after adjuvant therapy could have 
had a tumour with either a ‘good outcome’ (that is, a tumour that did 
not metastasize, for which adjuvant therapy was unnecessary) or a ‘poor 
outcome’ (that is, a tumour that metastasized and, in this case, responded 
to therapy). Hence, prediction cannot be separated from prognosis in this 
type of study. In principle, tumour samples from patients who are known 
to have metastatic disease could be used to develop drug-response profiles 
(all are, by definition, of the poor-outcome type), but such samples are not 
readily available, because patients who are treated for metastatic cancer 

Figure 2 | Conventional and molecular diagnostic testing for cancer. 
Conventional diagnostic tests rely heavily on morphological criteria 
(that is, properties of cells that can be observed microscopically in tissue 
sections from a tumour) to judge the aggressiveness of cancer, a process 
known as grading. As an example, the differences between a ‘low grade’ 
adenocarcinoma of the breast (for which patients generally have a 
favourable prognosis) and a ‘high grade’ adenocarcinoma of the breast 
(for which patients have a worse prognosis) can be observed from the 
images. More recently, multigene-expression tests (also known as in vitro 
diagnostic multivariate index assays, IVDMIAs) have been shown to be 
powerful tools for predicting disease outcome and have become subject 
to scrutiny by the US Food and Drug Administration. As an example, a 
molecular description of low-risk and high-risk adenocarcinoma of the 
breast, as judged by a gene-expression signature consisting of 70 genes, is 
shown. One current challenge is how to integrate the knowledge obtained 
from these conventional tests and molecular diagnostic tests into a single 
recommendation for the oncologist treating the patient.
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do not usually have their tumours biopsied first. Furthermore, patients 
with metastatic cancer often receive combination therapies, making it 
difficult to determine which drug a patient responded to. One way to 
circumvent some of these issues is to use gene-expression profiling in a 
‘neo-adjuvant’ setting, in which patients are treated systemically before 
the resection of a primary tumour (often carried out when the tumour 
is large). Short-term responses to anticancer drugs can be determined 
in this setting by using imaging technologies, and primary tumours can 
often be sampled by needle biopsy22,23. 

As a result of all of these factors, few drug-response gene-expression 
signatures have been published, and those that have are not clinically 
useful in their current form because they have not been properly vali-
dated against an independent series of tumours. It should be noted, how-
ever, that many clinical trials exploring the neo-adjuvant approach are 
underway, a well-documented example being the I-SPY trial, sponsored 
by the National Cancer Institute (http://tr.nci.nih.gov/iSpy).

A more general problem with predictive gene-expression signatures 
is that doctors often do not have a suitable replacement for the first-line 
therapy and are unlikely to withhold treatment entirely just because a 
biomarker indicates that the treatment probably will not be effective. 
Thus, the sensitivity (that is, the percentage of patients with a certain 
trait that test positive) and the specificity (that is, the percentage of 
patients without a certain trait that test negative) of predictive gene-
expression signatures will need to improve markedly before they will 
be useful in the clinic.

Potential short cuts to predictive biomarker development
Given the problems with generating predictive gene-expression profiles, 
several groups have attempted to generate such profiles through iden-
tifying genes or pathways that potentially affect how a cell responds to 
a drug, often by using models based on cell lines. A small number of 
human tumour samples can then be tested for the expression of these 
in vitro-generated sets of candidate genes. The approaches that have been 
explored so far are discussed in this section and illustrated in Fig. 3.

In vitro-generated predictive profiles using cell-line models
Gene-expression profiling of a series of human cancer cell lines with 
known drug sensitivity has been used to identify patterns of gene 
expression that correlate with responses to drugs in vitro24–26. These 
studies used a heterogeneous set of cell lines (a panel of 60 human 
cancer cell lines of different tissue origins, called NCI-60) with known 
sensitivity profiles to several anticancer drugs. The gene-expression pro-
files generated are therefore designed to be independent of the tissue of 
origin, but it is questionable whether such tissue-independent profiles 
are reliable predictors of drug responses. The validity of this approach 
has been challenged recently27; however, an independent validation of 
such in vitro-generated gene-expression signatures was also published 
around the same time28. It might be more fruitful to carry out such 
gene-expression profiling studies on panels of cell lines derived from 
a single type of cancer. Using a more homogeneous panel of cell lines 
might allow the identification of drug-resistance mechanisms that are 
missed when a heterogeneous set of cancer cell lines is used. Indeed, 
for breast cancer, the first results obtained by using this approach seem 
to be promising29. But there is no direct evidence that using a more 
homogeneous cell-line panel yields a better profile. An example of the 
general approach is shown in Fig. 3a.

Signalling pathways
In the past, the most effective therapies for cancer were based on empiri-
cally derived evidence from large clinical studies. This approach has 
resulted in a standard therapeutic regimen in which drug combination 
A is given for breast cancer, for example, but combination B is given for 
lung cancer, and so on. The continued use of such standard protocols to 
treat each type of cancer ignores one of the most important lessons from 
the past two decades of molecular genetics research on cancer: namely, 
that each tumour has a complex and unique set of genetic alterations that 
drive the oncogenic proliferation of the cells. Nevertheless, the fact that 
distinct drug combinations show activity against specific types of cancer 
reflects differences in the molecular pathways that are predominantly 
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Figure 3 | Short cuts to the development of drug-response biomarkers. 
a, Collections of tumour cell lines of known drug sensitivity can be used 
to build gene-expression signatures that discriminate between sensitive 
and resistant cell lines. Such in vitro-generated drug-sensitivity signatures 
can be validated on tumour samples from patients treated with the same 
drugs. b, Gene-expression signatures for signalling pathways can be 
constructed in vitro by introducing the gene of interest (a mutant RAS gene 
that is constitutively active in the example here) into tumour cell lines and 
studying the effect of the presence of the oncogene on genome-wide gene 
expression. Tumour samples for which the status of the RAS pathway is 
unknown can then be assessed by comparing their gene-expression patterns 
with that of the ‘activated RAS pathway’ identified in vitro. If a drug that 

targets the RAS pathway is available, then similarity between the gene-
expression profile of the tumour and a RAS pathway signature could be 
used to guide the choice of therapy. c, Functional genetic approaches can 
be used in vitro to uncover which genes can contribute to drug resistance 
in tumour cell lines. More specifically, using these approaches — genome-
scale gain-of-function screens or RNA-interference-based loss-of-function 
screens — full-length complementary DNAs or small interfering RNAs 
are introduced to change the abundance of gene products, turning drug-
sensitive cell lines into drug-resistant cell lines. The predictive ability of 
the genes that are candidates for modifying drug responses can then be 
examined by assessing their expression levels in a relatively small number 
of clinical samples from patients treated with the same drug. 
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deregulated in these cancers. As such, these empirically derived treat-
ment protocols can be viewed as primitive forms of targeted therapy, 
supporting the idea of stratifying tumours mainly according to their 
signalling-pathway perturbations rather than their tissue of origin. The 
challenge in developing molecular tests to predict drug responses is to 
identify the altered pathways in each tumour so that each patient receives 
the optimal targeted therapy. To facilitate this, there needs to be a shift 
away from describing cancers according to their tissue and cell type of 
origin (for example, adenocarcinoma of the breast) towards describing 
them by the main pathways that drive tumour-cell proliferation (for 
example, phosphatidylinositol-3-OH kinase (PI(3)K)-driven cancer or 
WNT-driven cancer). 

Indeed, for more than 30 years, it is has been routine practice to clas-
sify breast tumours as ER positive or ER negative, and this classification 
is commonly used to decide a patient’s eligibility for hormonal therapy, 
which is one of the main forms of adjuvant therapy for breast cancer 
(involving inhibition of the growth-stimulating effects of the female 
hormone oestrogen on the cancer). Therefore, neither the concept of 
targeted therapy nor the concept of naming tumours by the pathways 
that drive their proliferation is new. The main reason why it has not been 
adopted on a larger scale is because the tools to measure the activation 
of various signalling pathways have been lacking. Moreover, for most 
cancers, it is unclear which pathway drives the oncogenic process. 

One important recent advance that should aid the development of tests 
to predict drug responses is the finding that activation of a signalling 
pathway leads to characteristic changes in gene expression, which can 
be identified using gene-expression analysis. Joseph Nevins’s research 
group6,7,30, for example, has established several ‘pathway gene-expression 
signatures’ (the RAS signature, SRC signature, MYC signature and E2F 
signature) by experimentally manipulating cell lines to activate certain 
pathways, and these signatures can be used both to determine prognosis 
and to select specific therapies that target the activated pathways. This 
approach is illustrated in Fig. 3b. Whether such pathway signatures are 
similar in different tissue types remains to be investigated. It might be 
necessary to determine pathway signatures for each cancer type so that 
the optimal treatment can be chosen for each patient.

Such cell-line models are useful for building pathway gene-expression 
signatures, but they are often not an accurate representation of the in vivo 
situation in human cancer. To overcome this problem, Lao Saal et al.31 
analysed human breast-cancer samples by using immunohistochemistry 
to identify a set of primary tumours that expressed the tumour-suppres-
sor gene PTEN (phosphatase and tensin homologue, which is a compo-
nent of the PI(3)K-signalling pathway) at a low level and then linked this 
‘PTEN-low’ phenotype to a specific gene-expression signature of these 
tumours. Searching for this signature was shown to be a more sensitive 
way to detect tumours in which the PTEN–PI(3)K pathway is activated 
than using immunohistochemistry to detect PTEN itself (because events 
other than loss of, or a reduction in, PTEN expression can also modulate 
the pathway). Such a ‘pathway-integrative’ signature might therefore be 
an effective tool to guide the use of therapies that target this pathway31.

Alternatively, instead of starting from a cancer specimen, the pro cess 
can be inverted: first, a database of gene-expression patterns that result 
from well-defined perturbations of specific pathways can be estab-
lished, and then a test gene-expression data set (for example, from a 
given cancer specimen) can be assessed for how well it matches any of 
the gene-expression profiles in the database32,33. Such gene-expression 
compendia (also known as connectivity maps) can be powerful tools 
for deciding how to treat patients. This approach uncovered a similarity 
between the effects of exposure to heat-shock protein 90 inhibitors and 
inhibition of androgen-receptor signalling, a signalling pathway that is 
central to prostate cancer34. Similarly (and perhaps of greater clinical 
relevance), searching a database of gene-expression signatures induced 
in response to drug treatment revealed that rapamycin (which inhibits 
mTOR) induces a signature that overlaps with a signature for sensitiv-
ity to glucocorticoids that is found in samples from patients with acute 
lymphoblastic leukaemia (ALL)35. Indeed, when tested, rapamycin was 
able to induce glucocorticoid sensitivity in ALL samples. These data 

underscore the power of this type of approach to identify connections 
between apparently unrelated biological perturbations, which can lead 
to important insights into the factors that mediate drug sensitivity.

Functional genetic approaches
Another way to identify genes that can serve as biomarkers to predict 
drug responses is to take suitable cell-line models and use genetic screens 
to find genes or pathways whose altered activity modulates sensitivity to 
anticancer drugs in vitro (Fig. 3c). After such candidate genes have been 
identified, their expression can be measured in tumour samples from 
patients with cancer who have been treated with the same drug, and the 
pattern is then correlated with resistance to the drug. The validation of 
a defined set of candidate genes requires fewer tumour samples than 
an unbiased (genome-wide) search for predictive biomarkers, thereby 
bypassing one of the largest bottlenecks in the discovery of robust 
biomarkers: the availability of suitable tumour samples.

This approach might be useful to improve responses to trastuzumab 
(Herceptin), for example. This antibody-based drug is effective, par-
ticularly in combination with chemotherapy, for treating patients with 
breast cancers that produce the epidermal growth-factor receptor ERBB2 
(also known as HER2 and NEU). But less than 35% of patients with 
ERBB2-expressing metastatic breast cancer respond when treated with 
trastuzumab alone, and it is largely unclear why this is the case36. More-
over, gene-expression studies of samples from patient who were treated 
in the neo-adjuvant setting with trastuzumab have failed to find a clear 
drug-response profile22. To uncover trastuzumab-response modifiers, we 
have used loss-of-function RNA-interference screens, in which gene activ-
ity is suppressed on a large scale by using short duplex RNAs, to identify 
genes that confer resistance to trastuzumab in ERBB2-expressing breast-
cancer cell lines. Of a set of 8,000 genes tested, only loss of expression of 
the tumour-suppressor gene PTEN conferred resistance to trastuzumab37, 
a finding in close agreement with an earlier study implica ting this gene 
in resistance to trastuzumab38. Gene-expression signatures for the loss of 
PTEN expression in breast cancer are available31, and these could be suit-
able for predicting responses to trastuzumab, as well as to other therapies 
(such as gefitinib and lapatinib) targeted to ERBB2 or the various mem-
bers of the epidermal growth-factor receptor family.

Using a similar functional genetic approach, Charles Swanton et al.39 
identified regulators of mitotic arrest and ceramide metabolism as deter-
minants of sensitivity to paclitaxel and other chemotherapeutic drugs, 
and Angelique Whitehurst et al.40 identified genes whose suppression 
increases the efficacy of paclitaxel against non-small-cell lung cancer. 
Such synthetic lethal interactions (that is, a combination of two non-lethal 
events that together result in cell death) could be used to suggest valu-
able combination therapies for cancer. Along similar lines, two groups 
recently found that breast tumours with a mutation in BRCA1 or BRCA2 
are hypersensitive to inhibitors of poly(ADP-ribose) polymerase 1 
(PARP1)41,42. Gene-expression signatures that identify tumours with 
defects in the BRCA1 pathway are available4, so these could be used to 
determine which patients will respond to PARP1 inhibitors. 

Implementing gene-expression profiles in the clinic
Translating biomarker research into clinically useful tests has often 
been a frustrating activity. Many of the biomarkers identified in the 
initial tumour studies, which were retrospective, failed to be validated in 
subsequent studies. One of the main reasons for these failures was that 
early biomarker discovery was knowledge-driven, but the knowledge 
was often of poor quality. By contrast, some of the more recent gene-
expression signatures were derived from large data-driven, genome-
wide studies with excellent data quality, so these biomarkers are far 
more likely to be validated than previously identified biomarkers from 
knowledge-driven studies. 

Both the US Food and Drug Administration (FDA) and the medi-
cal community have recognized that multigene signatures are better 
biomarkers than single molecules, so why are so few gene-expression 
signatures available in the clinic? First, on the basis of past failures, doc-
tors are often reluctant to use biomarkers that have been validated only 
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by retrospective studies; they insist on validation by prospective studies 
before biomarkers are used in routine clinical practice. A second impedi-
ment is that DNA-microarray technology was initially not very robust 
(at least around the year 2000) and, to many scientists and doctors, it 
still has a poor reputation, which has been unfounded since industry 
became involved in production43. Third, the correct regulatory path 
for using multigene tests in clinical practice is unclear. For two of the 
three multigene tests that are commercially available, large prospec-
tive validation studies are in progress: the study TAILORx (ref. 44) is 
validating the 16-gene signature marketed as Oncotype DX (ref. 8); and 
the study MINDACT (ref. 45) is validating the 70-gene signature mar-
keted as MammaPrint4,46. But the results of these large studies, which 
require thousands of patients, are at least five years away, and the medical 
community seems to be divided about when to start using such tests in 
routine clinical practice47. This dilemma was exacerbated recently when 
the FDA cleared the first multigene assay (MammaPrint) on the basis 
of only retrospective validation (http://www.accessdata.fda.gov/scripts/
cdrh/cfdocs/cfPMN/PMNSimpleSearch.cfm?db=PMN&id=K062694). 
It should also be considered that the cost of large prospective trials is 
prohibitive for developing the ‘average’ molecular diagnostic test. Last, 
it is often forgotten that purely prognostic gene-expression profiles 
based on archival tumour samples from patients who were not given 
adjuvant therapy (which, at least for early-stage breast cancer, is a rela-
tively recent inclusion in the treatment regimen) cannot be validated in 
current prospective clinical trials, because most patients now receive 
some form of adjuvant therapy. And, as mentioned earlier, adjuvant 
therapy ‘contaminates’ the validation of a purely prognostic profile, so 
clinical studies in which adjuvant therapy is used are suboptimal for 
the validation of prognostic gene-expression signatures. For all of these 
reasons, we expect that robust retrospective studies will become the 
norm for validating prognostic gene-expression signatures.

The FDA’s involvement in regulating molecular diagnostic tests is 
contested by some. But it seems logical for several reasons that the FDA 
take an active role in the market approval of these tests. First, molecular 
diagnostic tests are likely to increasingly affect patient management as 
tests begin to show that treatment with a particular drug will benefit 
groups of patients whose tumours have a certain gene-expression pat-
tern. However, if the predictions of such tests are incorrect, then patients 
could be given an inappropriate drug. Second, these molecular tests 
are complex, and their accuracy and reproducibility are unlikely to be 
understood by most doctors. It is therefore improbable that the ‘average’ 
doctor would know whether a gene-expression test reliably predicts 
responses to an anticancer drug or reliably assigns a tumour as having 
a high risk of recurrence. For these reasons, the FDA has expressed its 
intention to regulate these molecular diagnostic tests similarly to how 
it regulates anticancer drugs. 

In September 2006, the FDA issued a draft guidance document for 
the use of a new type of molecular diagnostic test called an in vitro 
diagnostic multivariate index assay (IVDMIA). These tests use complex 
mathematical algorithms to interpret large amounts of gene- or protein-
expression data for the purpose of guiding medical decision-making. 
After a period open for comment by the diagnostic industry and clinical 
laboratories, the FDA issued a second version of this draft document 
in July 2007 (http://www.fda.gov/cdrh/oivd/guidance/1610.pdf). It is 
expected that the final version of this document will become the basis 
for regulatory enforcement of the molecular diagnostic industry in the 
United States. Unfortunately, Europe (once again) lags behind. The 
European counterpart of the FDA, the European Medicines Agency, 
has not announced any plans to regulate complex molecular diagnos-
tic tests other than requiring the Conformité Européene (CE) marking 
(a generic mark that is mandatory for many products on the market in 
the European Union, indicating that manufacturers have conformed to 
EU legislation). The regulation of molecular diagnostic tests is viewed 
by some as being a burden and impeding innovation. Others, however, 
think that the FDA’s approval of molecular diagnostic tests will improve 
the acceptance of these tests in the clinic. Acceptance might not be far 
off, however, considering that one in eight women with early-stage breast 

cancer in the United States is likely to have a molecular diagnostic gene-
expression test in 2008 (based on sales of Oncotype DX). It seems that 
not all doctors are going to wait for the results of the prospective valida-
tion studies that are underway.

Future perspectives
The intention of the FDA to regulate molecular diagnostic tests reflects 
the increased effect that these tests are likely to have on patient manage-
ment. Traditionally, diagnostic tests for cancer have been carried out 
in local hospitals. The quality control for these tests has been poor 
though. A large study that investigated interlaboratory variance in the 
immunohistochemical detection of ER in breast cancer, across 200 labo-
ratories in 26 countries, showed a false-negative rate of 30–60% (ref. 48), 
yet this type of test is used routinely to decide whether a patient should 
receive hormonal therapy. By contrast, a recent study investigating 
interlaboratory variance of a DNA-microarray-based test for breast-
cancer prognosis found an extremely high concordance between labo-
ratories49, which is consistent with other studies of the reproducibility of 
using microarray platforms43. Given their prognostic power and reliability, 
molecular diagnostic tests are expected to become increasingly relevant 
tools in tailoring care to each patient. Diagnostic tests have traditionally 
been thought of as low-cost items in the health-care chain; however, the 
new generation of molecular diagnostic tests will be more drug-like in 
terms of their effects on patient care, their oversight by regulatory authori-
ties and, consequently, their cost. The increased expenditure on molecular 
diagnostics could, however, be mitigated by the subsequent reduction in 
use of costly (molecularly targeted) therapies50. 

Molecular diagnostic tests will also be pivotal in identifying patients 
who respond to experimental anticancer drugs in clinical trials. Increas-
ingly, drugs will be developed together with a dedicated companion 
diagnostic test that identifies responders to the drug in question. This co-
development of drug and biomarker underscores the need for regulatory 
authorities to control both the drug and the companion diagnostic test. 
There seems to be no return from this new path to drug development. 
At first glance, stratifying patients in this way might seem unattractive 
to the pharmaceutical industry, because it reduces the size of the market 
for each anticancer drug. Conversely, however, molecular profiling might 
uncover commonalities between seemingly different tumours, poten-
tially expanding the market for a candidate drug. When a drug has been 
developed and is available together with a companion diagnostic test 
that correctly identifies patients who benefit from the drug, there is no 
longer a place for a similar drug for which patients cannot be adequately 
stratified. Or, as one of our colleagues in the drug development industry 
said recently: “Pharmacogenomics, you either do it, or it is done to you.” 
For once, the choice seems simple.  ■
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