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Abstract

In this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We
prove that the Green’s Functions associated with regularization operators are suitable support vector kernels with equivalent regularization
properties. Moreover, the paper provides an analysis of currently used support vector kernels in the view of regularization theory and
corresponding operators associated with the classes of both polynomial kernels and translation invariant kernels. The latter are also analyzed
on periodical domains. As a by-product we show that a large number of radial basis functions, namely conditionally positive definite
functions, may be used as support vector kernels.q 1998 Elsevier Science Ltd. All rights reserved.
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Nomenclature

R ¼ set of real numbers
C ¼ set of complex numbers
N ¼ set of integers
x ¼ (lowercase latin) scalars
x ¼ (boldface) elements ofRn

a i, ap
i , b i, bp

i ¼ Lagrange multipliers and expansion
coefficients
〈.·.〉 ¼ dot product in Hilbert space
k.k ¼ norm, induced by a dot product
f ¼ functions
f̄ ¼ complex conjugate (of a function or a scalar)
f̃ ¼ Fourier transform off
F ¼ feature space
F,F(x) ¼ elements and mappings intoF
P̂ ¼ operators
D, Dij ¼ matrices, matrix elements
dx0

(x), d ij ¼ delta distribution, Kronecker delta
(l i, f i), (L i, W i) ¼ (eigenvector, eigenvalue) pairs∏n

i ¼ 1 ¼ product

#n
i ¼ 1 ¼ convolution∑
n
i ¼ 1 ¼ summation

1I ¼ indicator function on a setI
1 ¼ identity map
~1 ¼ vector with all entries equal to 1

1. Introduction

Support vector (SV) machines for pattern recognition,
regression estimation, and operator inversion exploit the
idea of mapping data into a high dimensional feature
space where they perform a linear algorithm. Instead of
evaluating this mapping explicitly, one uses integral opera-
tor kernelsk(x, y) which correspond to dot products of the
mapped data in high dimensional space, Aizerman et al.
(1964); Boser et al. (1992), i.e.

k(x, y) ¼ 〈F(x)·F(y)〉 (1)

with F: Rn → F denoting the map into feature spaceF.
Mostly, this map and many of its properties are unknown.
Even worse, so far no general rule was available which
kernel should be used, or why mapping into a very high
dimensional space often provides good results, seemingly
defying the curse of dimensionality. In order to clarify this
dilemma we show how these kernelsk(x, y) correspond to
regularization operatorŝP, the link being thatk is the
Green’s function ofP̂

p
P̂ (with P̂

p
denoting the adjoint

operator ofP̂). In other words — given a support vector
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kernel we show how to find the corresponding regulariza-
tion operator and vice versa. For the sake of simplicity, we
shall limit ourselves to the case of regression — our con-
siderations, however, also hold true for the other cases
mentioned earlier.

This paper1 starts by briefly reviewing the concepts of SV
Machines (Section 2) and regularization networks (Section
3). Section 4 contains the main result, the derivation of a
correspondence between regularization operators used in
regularization networks and SV kernels. In Section 5 appli-
cations of this finding to translation invariant kernels for
both unbounded and bounded support are presented. Section
6 presents the operators corresponding to polynomial
kernels, another frequently used class of SV kernels. Sub-
sequently Section 7 introduces a new class of possible SV
kernels which do not necessarily satisfy Mercer’s condition,
namely kernels derived from conditionally positive definite
functions. Section 8 concludes the paper with a discussion.
Finally Appendix A contains a worked through example and
Appendix B applies the methods presented in this paper to
find a connection between ridge regression and SV
machines. Due to its specific setting, however, only a less
formal exposition is possible.

2. Support vector machines

The SV algorithm for regression estimation, as described
in Vapnik (1995); Vapnik et al. (1997), exploits the idea of
computing a linear function in high dimensional feature
spaceF (furnished with a dot product). Thereby this algo-
rithm can compute a nonlinear function in the space of the
input dataRn. The functions take the form

f (x) ¼ 〈w·F(x)〉 þ b (2)

with F:Rn → F being the map into feature space andw [ F.
In order to estimatef from a given training set

{( xi ,yi)li ¼ 1,…,l, xi [ Rn,yi [ R}, one tries to minimize
the regularized risk functional

Rreg[f ] ¼Remp[f ] þ
l

2
kwk2 ¼

1
l

∑l

i ¼ 1
c(f (xi), yi) þ

l

2
kwk2

(3)

i.e. the empirical risk functionalRemp[f] together with a
complexity termkwk2, thereby enforcing flatness in feature
space. Herec(f(x i),yi) is the cost function determining how
the distance betweenf(x i) and the target valuesyi should be
penalized, andl [ Rþ is a regularization constant. The idea
of flatnessis derived from pattern recognition where this
corresponds to finding a hyperplane that has maximum dis-
tance in F from the classes to be separated Boser et al.
(1992); Cortes and Vapnik (1995). As shown in Vapnik

(1995) for the case ofe-insensitive cost functions,

c(f (x), y) ¼
lf (x) ¹ yl¹ e for lf (x) ¹ yl $ e

0 otherwise

(
(4)

Eq. (3) can be minimized by solving a quadratic program-
ming problem formulated in terms of dot products inF. It
turns out that the solutionw can be expressed in terms of
support vectors. Note that the representation can be sparse.
Therefore, the points corresponding to nonzeroa i, which
suffice for describingf, are calledsupport vectors.

w¼
∑l

i ¼ 1
aiF(xi): (5)

Therefore, via Eq. (1)

f (x) ¼ 〈w·F(x)〉 þ b¼
∑l

i ¼ 1
ai 〈F(xi)·F(x)〉 þ b

¼
∑l

i ¼ 1
aik(xi ,x) þ b ð6Þ

wherek(x i, x) is a kernel function computing a dot product
in feature space (a concept introduced by Aizerman et al.,
1964). The coefficientsa i can be found by solving a
quadratic programming problem (withKij : ¼ k(x i, x j),
ai ¼ b i ¹ bp

i andb i, bp
i being the solution of the optimiza-

tion problem below):

minimize
1
2

∑l

i, j ¼ 1
(bp

i ¹ bi)(bp
j ¹ bj)Kij

¹
∑l

i ¼ 1
((bp

i ¹bi)yi ¹ (bp
i þ bi)e)

subject to
∑l

i ¼ 1
(bi ¹ bp

i ) ¼ 0, bi ; b
p
i [ 0,

1
ll

� �
ð7Þ

Note that Eq. (4) is not the only possible choice of cost
functions resulting in a quadratic programming problem
(many convex cost function, in particular quadratic parts
and infinities are admissible, too). For a detailed discussion
see Smola and Scho¨lkopf (1997); Smola et al. (1998). Also
note that any continuous symmetric functionk(x, y) [ L2 #

L2 may be used as an admissible kernel if it satisfies a weak
form of Mercer’s condition (Riesz and Nagy, 1955)∫∫

k(x,y)g(x)g(y)dxdy $ 0 for all g [ L2(Rn) (8)

3. Regularization networks

Here again we start with minimizing the empirical risk
functional Remp[f] plus a regularization termkP̂f k2 defined
by a regularization operator̂P in the sense of Tikhonov and
Arsenin (1977), i.e.P̂ is a positive semidefinite operator

1 Portions of this work have been published in Smola and Scho¨lkopf
(1998).
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mapping from the Hilbert SpaceH of functions f under
consideration to a dot product spaceD such that the expres-
sion 〈P̂f·P̂g〉 is well defined. For instance by choosing a
suitable operator that penalizes large variations off one
can reduce the well-known overfitting effect. Another
possible setting also might be an operatorP̂ mapping from
L2(Rn) into some reproducing kernel Hilbert space
(Kimeldorf and Wahba, 1971; Girosi, 1997). In Appendix
A, we provide a worked through example (mainly taken
from Girosi et al., 1993) for a simple regularization operator
to illustrate our reasoning.

Similar to Eq. (3), we minimize

Rreg[f ] ¼ Rempþ
l

2
kP̂fk2 ¼

1
l

∑l

i ¼ 1
c(f (xi), yi) þ

l

2
kP̂f k2 (9)

Using an expansion off in terms of some symmetric func-
tion k(x i, x j) (note here, thatk need not fulfill Mercer’s
condition),

f (x) ¼
∑

i
aik(xi ,x) þ b, (10)

and the cost function defined in Eq. (4), this leads to a
quadratic programming problem similar to the one for
SVs. By computing Wolfe’s dual (for details of the calcu-
lations see Smola and Scho¨lkopf, 1997), and using

Dij : ¼ 〈(P̂k)(xi , :)·(P̂k)(xj , :)〉 (11)

(〈f·g〉 denotes the dot product of the functionsf and

g in Hilbert Space, e.g.
∫

f̄ (x)g(x)dx), we get

~a ¼ D¹ 1K(~b ¹ ~bp), with b i, bp
i being the solution of

minimize
1
2

∑l

i, j ¼ 1
(bp

i ¹ bi)(b
p
j ¹ bj)ðKD¹ 1K)ij

¹
∑l

i ¼ 1
((bp

i ¹ bi)yi ¹ (bp
i þ bi)e)

subject to
∑l

i ¼ 1
(bi ¹bp

i ) ¼ 0, bi ; b
p
i [ 0,

1
ll

� �
: ð12Þ

Unfortunately, this setting of the problem does not preserve
sparsity in terms of the coefficients, as a potentially sparse
decomposition in terms ofb i and bp

i is spoiled byD -1K,
which in general is not diagonal (Eq. (6), on the other
hand, does typically have many vanishing coefficients, see
e.g. Scho¨lkopf et al., 1995; Vapnik, 1995).

4. The relation between both methods

Comparing Eq. (7) with Eq. (12) leads to the question if
and under which condition the two methods might be
equivalent and, therefore, also under which conditions,
given a suitable cost function, regularization networks

might lead to sparse decompositions (i.e. only a few of the
expansion coefficientsa i in f would differ from zero). A
sufficient2 condition isD ¼ K (thusKD¹1K ¼ K), i.e.

k(xi ,xj) ¼ 〈(P̂k)(xi , :)·(P̂k)(xj , :)〉 (self consistency): (13)

This is the main equation of this paper. Our goal now is to
solve the following two problems:

1. Given a regularization operatorP̂, find a kernelk such
that a SV machine usingk will not only enforce flatness
in feature space, but also correspond to minimizing a
regularized risk functional withP̂ as regularization
operator;

2. Given a SV kernelk, find a regularization operator̂P
such that a SV machine using this kernel can be viewed
as a regularization network usinĝP.

These two problems can be solved by employing the con-
cept of Green’s functions as described in Girosi et al. (1993).
These functions had been introduced in the context of solving
differential equations. For our purpose, it is sufficient to know
that the Green’s functionsGxi

(x) of P̂
p
P̂ satisfy

(P̂p
P̂Gxi

)(x) ¼ dxi
(x) (14)

Here,dxi
(x) is thed-distribution (not to be confused with the

Kronecker symbold ij) which has the property that〈f·dxi
〉 ¼

f(x i). The relationship between kernels and regularization
operators is formalized in the following proposition:

Proposition 1 (Green’s functions and Mercer kernels).
Let P̂ be a regularization operator, and G be the Green’s
function ofP̂

p
P̂. Then G is a Mercer kernel such that D¼ K.

SV machines using G minimize risk functional Eq. (9) withP̂
as regularization operator.3

Proof. Substituting Eq. (14) intoGxj
(xi) ¼ 〈Gxj

(:)·dxi
(:)〉

yields

Gxj
(xi) ¼ 〈(P̂Gxi

)(:)·(P̂Gxj
)(:)〉 (15)

henceG(x i,x j): ¼ Gxi
(x j) is symmetric and satisfies Eq. (13).

Thus the SV optimization problem Eq. (7) is equivalent to
the regularization network counterpart Eq. (12). Further-
more,G is an admissible non-negative kernel, as it can be
written as a dot product in Hilbert space, namely

G(xi ,xj) ¼ 〈F(xi)·F(xj)〉 with F : xi ° (P̂Gxi
Þ(:): (16)

B

A similar result can be obtained by exploiting Mercer’s
theorem in a more straightforward manner, by using the fact
that a Mercer kernelk can be expanded into a convergent

2 In the case ofK not having of full rankD is only required to be the
inverse on the image ofK. The pseudoinverse for instance is such a matrix.

3 This condition is sufficient but not necessary for satisfying Eq. (13). Any
projection ofG onto an invariant subspace ofP̂

p
P would also satisfy this

equation. Note that asG(.,.) being a function onRn # Rn the projection
operator has to be applied to it as a function of both the first and the second
argument.
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series of its eigensystem (f l(x),l l) with l l $ 0,

k(xi ,xj) ¼
∑

l

ll fl (xi)fl (xj) (17)

This is particularly useful for the approximation of period-
ical functions and will come handy in example 6 as we will
have to deal with a discrete eigensystem in this case.

Proposition 2 (a discrete counterpart). Given a regular-
ization operatorP̂ with an expansion of̂P

p
P̂ into a discrete

eigensystem(L l, W l) and a kernel k with

k(xi ,xj) ¼
∑

l

dl

Ll
Wl (xi)Wl (xj) (18)

wheredl [ {0, 1} for all l, ando l (dl /L l) convergent. Then k
satisfies Eq. (13).

Proof. Evaluating Eq. (13) and using orthonormality of the
system (dl/L l, W l), yields:

〈k(xi , :)·(P̂
p
P̂k)(xj , :)〉

¼
∑

l

dl

Ll
Wl (xi)Wl (:)·P̂

p
P̂

∑
l 9

dl 9

Ll 9
Wl 9(xj)Wl 9(:)

 !* +

¼
∑
l , l 9

dl

Ll

dl 9

Ll 9
Wl (xi)Wl 9(xj)〈Wl (:)·P̂

p
P̂Wl 9(:)〉

¼
∑

l

dl

Ll
Wl (xi)Wl (xj) ¼ k(xi ,xj) ð19Þ

B

Rearranging of the summation coefficients is allowed as
the eigenfunctions are orthonormal and the serieso l (dl /L l)
converges. Consequently a large class of kernels can be
associated with a given regularization operator (and vice
versa) thereby restricting ourselves to some subspace of
the eigensystem of̂P

p
P̂.4

Excluding eigenfunctions of̂P
p
P̂ from the kernel expan-

sion effectively decreases the expressive power of the set of
approximating functions, i.e. we limit the capacity of the
system of functions. Removing low capacity (i.e. very flat)
eigenfunctions from the expansion will have an adverse
effect, though, as the data will have to be approximated
by the higher capacity functions.

In the following we will exploit this relationship in both
ways: to compute Green’s functions for a given regulariza-
tion operatorP̂ and to infer the regularization operator from
a given kernelk.

Note that a similar reasoning can be applied to connect
ridge regression schemes with support vector kernels as
shown in Appendix B.

5. Translation invariant kernels

Let us now more specifically consider regularization
operatorŝP that may be written as multiplications in Fourier
space

〈P̂f·P̂g〉 ¼ 1
(2p)n=2

∫
Q

f̃ (w)g̃(w)
P(w)

dw (20)

with f̃ (w) denoting the Fourier transform off(x), and
PðwÞ ¼ Pð ¹ wÞ real valued, nonnegative and converging
to 0 for lwl → ` and Q ¼ supp[P(w)]. Small values of
P(w) correspond to a strong attenuation of the correspond-
ing frequencies. Hence small values ofP(w) for largew are
desirable since high frequency components off̃ correspond
to rapid changes inf. P(w) describes the filter properties of
P̂

p
P̂ — note that no attenuation takes place forP(w) ¼ 0 as

these frequencies have been excluded from the integration
domain.

For regularization operators defined in Fourier space by
Eq. (20) it can be shown by exploitingP(w) ¼ P( ¹ w) ¼

P(w) that

G(xi ,x) ¼
1

(2p)n=2

∫
Rn

eiw(xi ¹ x)P(w)dw (21)

is a corresponding Green’s function satisfying translational
invariance, i.e.

G(xi ,xj) ¼ G(xi ¹ xj) and G̃(w) ¼ P(w)

For the proof, one only has to show thatG satisfies Eq. (13).
This provides us with an efficient tool for analyzing SV
kernels and the types of capacity control they exhibit. In
fact the above is a special case of Bochner’s theorem (Boch-
ner, 1959) stating that the Fourier transform of a positive
measure constitutes a positive Hilbert Schmidt kernel.

Example 3 (Bq-splines). In Vapnik et al. (1997) the use of
Bq-splines was proposed (see Fig. 1) as building blocks for
kernels, i.e.

k(x) ¼
∏n

i ¼ 1
Bq(xi) (22)

with x [ Rn. For the sake of simplicity, we consider the case
n ¼ 1. Recalling the definition (up to scaling factors) by
Unser et al. (1991)

Bq ¼ #qþ 1 1[ ¹ 0:5,0:5] (23)

we can utilize the above result and the Fourier–Plancherel
identity to construct the Fourier representation of the corre-
sponding regularization operator. Up to a multiplicative
constant, it equals

P(w) ¼ k̃(w) ¼ sinc(qþ 1) wi

2

� �
(24)

This answers the question why onlyB-splines of odd order
are admissible although both even and odd orderB-splines

4 The intuition of this reasoning is that there exists a one to one corre-
spondence between kernels and regularization operators only on the image
of H under the integral operator (Ôf)(x): ¼

�
k(x, y)f(y) dy, namely thatÔ

and P̂
p
P̂ are inverse to another. On the null space ofÔ, however, the

regularization operator̂P
p
P̂ may take on an arbitrary form. In this casek

still will fulfill the self consistency condition.
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converge to a Gaussian forq → ` due to the law of large
numbers: The even ones have negative parts in the Fourier
spectrum (which would result in an amplification of the
corresponding frequency components). The zeros ink̃
stem from the fact thatBq has only compact support
[¹(q þ 1)/2, (q þ 1)/2]. By using this kernel we trade
reduced computational complexity in calculatingf (we
only have to take points into account withkx i ¹ x jk # c
from some limited neighborhood determined byc) for a
possibly worse performance of the regularization
operator as it completely removes frequencieswp with
k̃(wp) ¼ 0.

Example 4 (Gaussian kernels). Following the exposition
of Yuille and Grzywacz (1988) as described in Girosi et al.
(1993), one can see that for

kP̂fk2 ¼

∫
dx

∑
m

j2m

m!2m(Ôm
f (x))2 (25)

with Ô
2m

¼ Dm and Ô
2mþ 1

¼ D=m, D being the Laplacian
and= the gradient operator, we get Gaussians kernels (see

Fig. 2)

k(x) ¼ exp ¹
kxk2

2j2

 !
(26)

Moreover, we can provide an equivalent representation
of P̂ in terms of its Fourier properties, i.e.P(w) ¼

exp[¹(j2kwk2)/2) up to a multiplicative constant. Training
a SV machine with Gaussian RBF kernels (Scho¨lkopf et al.,
1997) corresponds to minimizing the specific cost function
with a regularization operator of type Eq. (25).

Recall that Eq. (25) means that all derivatives off are
penalized (we have a pseudodifferential operator) to obtain
a very smooth estimate. This also explains the good per-
formance of SV machines in this case, as it is by no means
obvious that choosing a flat function in some high dimen-
sional space will correspond to a simple function in low
dimensional space, as shown in example 5.

Gaussian kernels tend to yield good performance under
general smoothness assumptions and should be considered
especially if no additional knowledge of the data is
available.

Fig. 1. Left:B3-spline kernel. Right: Fourier transform of the kernel.

Fig. 2. Left: Gaussian kernel with standard deviation 0.5. Right: Fourier transform of the kernel.
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Example 5 (Dirichlet kernels). In Vapnik et al. (1997), a
class of kernels generating Fourier expansions was intro-
duced for interpolating data onRn,

k(x) ¼
sin(2N þ 1)x=2

sinx=2
(27)

(As in example 3 considerx [ R1 to avoid tedious notation.)
By construction, this kernel corresponds to
P(w) ¼ 1=2

∑
N
i ¼ ¹ Ndi(w). A regularization operator with

these properties, however, may not be desirable as it only
damps a finite number of frequencies (cf. Fig. 3) and leaves
all other frequencies unchanged which can lead to overfit-
ting (Fig. 4).

In some cases it might be useful to approximate
periodical functions, e.g. functions defined on a circle.
This leads to the second possible type of translation
invariant5 kernel functions, namely functions defined on

factor spaces. Without loss of generality assume the period
to be 2p — consequently one gets translation invariance on
R/2p.

In the following we will show the consequences of this
setting for the operator defined in example 4.

Example 6 (periodical Gaussian kernels). Analogously
to Eq. (25), define a regularization operator on functions
on [0, 2p] n by

kP̂fk2 ¼p¹ n
∫

[0, 2p]n

dx
∑
m

j2m

m!2m(Ôm
f (x))2 (28)

with Ô as in example 4. For the sake of simplicity assume
n ¼ 1. A generalization to multidimensional kernels is
straightforward.

It is easy to check that the Fourier basis {1/2, sin(lx),
cos(lx), l [ N} is an eigensystem of the operator defined
above, with eigenvalues exp((l2j2)/2). Now apply proposi-
tion 2, taking into account all eigenfunctions exceptl ¼ 0.

Fig. 3. Left: Dirichlet kernel of order 10. Note that this kernel is periodical. Right: Fourier transform of the kernel.

Fig. 4. Left: Regression with a Dirichlet Kernel of orderN ¼ 10. One can clearly observe the overfitting. Right: regression of the same data with a Gaussian
Kernel of widthj2 ¼ 1.

5 Obviously defining translation invariant kernels on a bounded interval is
not a reasonable concept as the data would hit the bounds of the interval
when translated by a large amount. Therefore, only unbounded intervals
and factor spaces are possible domains.
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This yields the following kernel:

k(x,x9) ¼
∑̀
l ¼ 1

e
¹

l 2j2

2 (sin(l x)sin(l x9) þ cos(l x)cos(l x9))

¼
∑̀
l ¼ 1

e
¹

l 2j2

2 cos(l (x¹ x9)) ð29Þ

For practical purposes one may truncate the expansion
after a finite number of terms. Moreover we rescalek to
have a range of exactly [0, 1] by using the positive
offset

P`
l ¼ 1 ( ¹ 1)ðl ¹ 1Þe¹ ((l 2j2)=2) and the scaling factor

1=2
P`

l ¼ 1 e¹ (((2l ¹ 1)2j2)=2) (cf. Fig. 5).
In the context of periodical functions, the difference

between this kernel and the Dirichlet kernel of example 5
is that the latter does not distinguish between the different
frequency components inw [ {¹Np,…,Np}. However, it
effectively limits the maximum capacity of the system to
approximating the data with a Fourier expansion up to the
order N.

The question that arises now is which kernel to choose.
Let us think about two extreme situations.

• Suppose we already knew the shape of the power spec-
trum Pow(w) of the function we would like to estimate.
In this case we choosek such that̃k matches the power
spectrum.

• If we happen to know very little about the given data a
general smoothness assumption is a reasonable choice.
Hence we might want to choose one of the Gaussian
kernels in example 4 or 6. If computing time is important
one might moreover consider kernels with compact sup-
port, e.g. using theB-spline kernels of example 3. This
choice will cause many matrix elementskij ¼ k(x i ¹ x j)
to vanish.

The usual scenario will be in between the two extreme
cases and we will have some limited prior knowledge

available. For more information on using prior knowledge
for choosing kernels see Scho¨lkopf et al. (1998).

Prior knowledge can also be used to determine the free
parameters of the kernel, e.g. its width (j) in the examples 4
and 6. Besides that model selection principles like structural
risk minimization (Vapnik, 1982), cross validation (Bishop,
1995; Amari et al., 1997; Kearns, 1997), MDL (Rissanen,
1985), Bayesian methods (MacKay, 1991; Bishop, 1995),
etc. can be employed. Choosing a small width of the kernels
leads to high generalization error as it effectively decouples
the separate basis functions of the kernel expansion into
very localized functions which is equivalent to memorizing
the data, whereas a wide kernel tends to oversmooth.

Note that the choice of the width may be more important
than the actual functional form of the kernel. There may be
little difference in the relevant part of the filter properties
between e.g. aB-spline and a Gaussian kernel (cf. Fig. 6).

The invariance of the kernels presented so far has been
exploited only in the context of invariance with respect to
the translation symmetry group inRn. Yet they could also be
applied to other symmetry transformations corresponding to
other canonical coordinate systems such as the rotation and
scaling group as proposed by Segman et al. (1992); Ferraro
and Caelli (1994), i.e. to a logpolar parametrization ofRn or
the parametrization of manifolds.

6. Kernels of dot-product type

There exists a large class of support vector kernels which
are not translation invariant, namely kernels of the type

k(x, x9) ¼ t(〈x·x9〉) (30)

For instance, polynomial kernels (〈x·x9〉 þ c)p of homo-
geneous (c ¼ 0) or inhomogeneous type (c . 0) belong to
this class. It follows directly from Poggio (1975) that poly-
nomial kernels satisfy Mercer’s condition. Now the question

Fig. 5. Left: periodical Gaussian kernel for several values ofj (normalized to 1 as its maximum and 0 as its minimum value). Peaked functions correspond to
smallj. Right: Fourier coefficients of the kernel forj2 ¼ 0.1
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arises which regularization operatorP̂ these kernels might
correspond to, and which functionst might be admissible
ones. ObviouslŷP can not be translation invariant, as this is
not the case fork. Note that although lacking translation
invariance, these kernels still exhibit (by construction) the
property of rotation invariance — orthogonal transforma-
tionsR are isometries of the Euclidean dot product:〈x·y〉 ¼

〈Rx·Ry〉.
Skipping tedious calculations, we give an example of an

operator satisfying

k(x1, x2) ¼ 〈P̂k(x1, :)·P̂k(x2, :)〉 (31)

for homogeneous polynomials. We then use this result to
give an analogous expansion for the inhomogeneous case,
and present a sufficient condition fort(〈x·x9)) to be an
admissible Mercer kernel.

Let m ¼ (m1,…,mn) [ Nn
0 be a multi index and denote

lml : ¼
∑n

i ¼ 1
mi and

p

m

 !
: ¼

p!

(p¹ lml)!
∏n

i ¼ 1mi !
(32)

the multinomial coefficient. Moreover, let

Dm
0 f : ¼

1
m1!

]m1
x1

, …,
1

mn!
]mn

xn
f (x)lx ¼ 0 (33)

and em be an orthonormal basis, i.e.〈em·em9) ¼ dmm9.
Observe how for eachm9 Dm

0 extracts exactly one coeffi-
cient from the monomials of degreem. Now we can define
an operatorP̂p which will act as a regularization operator
and satisfy Eq. (31), namely

P̂p ¼
∑

lml¼ p

em

p

m

 ! 1
2

Dm
0 (34)

Example 7 (Vapnik, 1995). A simple example of an

operator of this type can be obtained for degree 2 homo-
geneous polynomials onR2 i.e. for the kernel

k(x, y) ¼ 〈x·y〉2: (35)

Denoting (1=2)]2
x1

, ]x1
]x2

, (1=2)]2
x2

the projectors onto the
corresponding monomials we have

P̂¼ e1
1
2
]2

x1
þ e2

���
2

p
]x1

]x2
þ e3

1
2
]2

x1
(36)

corresponding to

〈(x1,x2)·(y1,y2)〉2 ¼ 〈(x2
1,

���
2

p
x1x2, x2

2)·(y2
1,

���
2

p
y1y2; y

2
2)〉

(37)

An intuitive description ofP̂ would be that the data is
mapped fromR2 into 3-dimensional feature space (F ¼ R3)
by computing monomials of degree 2. Subsequently one
seeks to compute theflattestfunction in this new space.

Note thatP̂p is only well-defined on functions that arep
times differentiable. Accordingly, we will have to restrict
the space of functions under consideration toCp. This is not
a major restriction as polynomial kernels are inC` by
construction.

It is interesting that the homogeneous polynomial kernel
also satisfies the self consistency condition Eq. (13) for the
following operator

P̂¼
∑̀
i ¼ 0

P̂i (38)

In order to construct an operator for inhomogeneous poly-
nomials, we make use of the expansion

(〈x·y〉 þ c)p ¼
∑p

i ¼ 1

p

i

 !
cp¹ lml〈x·y〉i (39)

(for convenience setc ¼ 1). Hence one may decompose the
inhomogeneous polynomial kernel into a series of homo-
geneous kernels and construct the corresponding operator
by

P̂inh ¼
∑p

i ¼ 0

p

i

 ! 1
2

P̂i ¼
∑

lml#p

em

p

m

 ! 1
2

Dm
0 (40)

Exploiting this idea even further allows us to state a suffi-
cient condition fort(〈x·y〉) to be a Mercer kernel. As homo-
geneous polynomial kernels satisfy Mercer’s condition so
does any positive linear combination of them.

Corollary 8 (functions with non-negative power-series).
For every function t(x) that can be expanded into a uni-
formly convergent power series onR with nonnegative
expansion coefficients, i.e.

t(x) ¼
∑̀
i ¼ 0

aix
i with ai $ 0 (41)

Fig. 6. Comparison of regularization properties in the low frequency
domain of B3-spline kernel and Gaussian kernel (j2 ¼ 20). Up to an
attenuation factor of 5·10¹3 both types of kernels exhibit qualitatively
similar filter characteristics.
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the kernel k(x, y): ¼ t(〈x·y〉) is a Mercer kernel and a corre-
sponding regularization operator is

P̂t ¼
∑̀
i ¼ 0

a1=2
i P̂p (42)

Consequently, functions like ex, cosh(x), sinh(x), etc. could
be used as possible Mercer kernels. Moreover, note that the
same argument applies fort(k(x, y)): if k is any Mercer
kernel, andt satisfies the conditions of Corollary 8 then

t(k(x,y)) ¼ t(〈F(x)·F(y)〉) (43)

is a Mercer kernel. So Eq. (43) provides further means to
construct more general kernels, e.g. sinh(e〈x·y〉).

7. A new class of support vector kernels

We will follow the lines of Madych and Nelson (1990) as
pointed out by Girosi et al. (1993). The main statement is
that conditionally positive definite (cpd) functions generate
admissible SV kernels. This is very useful as the property of
being cpd often is easier to verify than Mercer’s condition,
especially when combined with the results of Schoenberg
and Micchelli on the connection between cpd and comple-
tely monotonic functions Schoenberg (1938a); Schoenberg
(1938b); Micchelli (1986). Moreover, cpd functions lead to
a class of SV kernels that do not necessarily satisfy Mercer’s
condition.

Definition 9 (conditionally positive definite functions). A
continuous function h, defined on[0, `), is said to be con-
ditionally positive definite (cpd) of order m onRn if for any
distinct pointsx1,…x l [ Rn the quadratic form∑l

i, j ¼ 1
cicjh(kxi ¹ xjk

2) (44)

is non-negative provided that the scalars c1,…,cl satisfy∑
l
i ¼ 1cip(xi) ¼ 0 for all polynomials p onRn of degree

lower than m.

Definition 10 (completely monotonic functions). A func-
tion h(x) is called completely monotonic of order m if

( ¹ 1)n dn

dxnh(x) $ 0 for x [ Rþ
0 andn $ m (45)

It can be shown (Schoenberg, 1938a; Schoenberg, 1938b;
Micchelli, 1986) that a functionh(x2) is conditionally posi-
tive definite if and only ifh(x) is completely monotonic of
the same order. This gives a (sometimes simpler) criterion
for checking whether a function is cpd or not.

Proposition 11 (cpd functions and admissible kernels).
Define Pn

m to be the space of polynomials of degree
lower than m onRn. Every cpd function h of order m
generates an admissible Kernel for SV expansions on the

space of functions f orthogonal toPn
m by setting k(x i, x j): ¼

h(kx i ¹ x jk2).

Proof. In Dyn (1991); Madych and Nelson (1990) it was
shown that cpd functionsh of orderm generate semi-norms
k.kh by

kf k2h :¼
∫

dxidxjh(kxi ¹ xjk
2)f (xi)f (xj) (46)

provided that the projection off ontoPn
m is zero. For these

functions, this, however, also defines a dot product in some
feature space. Hence they can be used as SV kernels.B

Consequently, one may use kernels like those proposed in
the context of regularization networks by Girosi et al. (1993)
as SV kernels:

k(x, y) ¼ e¹ bkx ¹ yk2 Gaussian, (m¼ 0) (47)

k(x, y) ¼ ¹

�������������������������
kx ¹ yk2 þ c2

q
multiquadric, (m¼ 1) (48)

k(x, y) ¼
1�������������������������

kx ¹ yk2 þ c2
q inverse multiquadric, (m¼ 0)

(49)

k(x, y) ¼ kx ¹ yk2ln kx ¹ yk thin plate splines, (m¼ 2)
(50)

Here the corresponding regularization operatorP̂ is given
implicitly by the seminorm (Eq. (46)) as

kP̂fk2 : ¼ kf k2h (51)

However, one has to ensure the orthogonality of our esti-
mate with respect toPn

m, i.e. ensure that
∑

l
i ¼ 1cip(xi) ¼ 0

for all polynomialsp onRn of degree lower thanm with ci

being the expansion coefficients of the estimate, i.e.a i.
We proceed with algorithmic details how to actually

compute the expansion. In order not to loose expressive
power in the estimatef it is necessary to take the
polynomials separately into account, i.e. modify Eq. (10)
to get

f (x) ¼
∑l

i ¼ 1
cik(xi ,x) þ p(x) with p(x) [ Pn

m (52)

Both of these issues can be addressed by splittingf into a
term f' orthogonal toPn

m for which kf 'k2h is well defined
and a polynomial term which will not be regularized at all.
(Of course one could define an additional regularization
operator for the polynomial part but this would without
need render the notation more tedious.) Hence, the regular-
ized risk functional (Eq. (9)) takes on the following form

Rreg[f ] ¼ Remp[f ] þ
l

2
kf 'k2h (53)

with f': ¼ (1 ¹ Proj[Pn
m])f and Proj[.] denoting the

projection operator. Repeating the calculations that led to
Eq. (7), yields a similar optimization problem with the
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difference being that the equality constraint∑l

i ¼ 1
(bi ¹ bp

i ) ¼ 0 (54)

has been replaced with∑l

i ¼ 1
(bi ¹ bp

i )p(xi) ¼ 0 for all p [ P
n

m
(55)

Note that for them ¼ 1 condition, Eq. (55) reduces to
Eq. (54) asPn

1 contains only the constant function. The
resulting optimization problem is positive semidefinite,
however, only in the feasible region given by the equality
constraints. Some of the eigenvalues of the matrixK may be
negative in the space of coefficients not satisfying Eq. (55).
It can be seen very easily for the multiquadric case (Eq. (48))
— all entries inKij are negative. This can lead to numerical
instabilities for quadratic programming codes as they
usually assume the quadratic matrix to be positive semi-
definite not only in the feasible region of the parameters
but on the whole space (cf. More and Toraldo, 1991;
Vanderbei, 1994). A practical solution to this problem is
to remove the spaceS spanned by all polynomialsPn

m on
the data {x1,…,x l} from the image ofKij while keeping it
symmetric by substitutingKij with ((1 ¹ PProj[S]) t K(1 ¹

PProj[S])) ij. HerePProj is the projection matrix onR l corre-
sponding to Proj[S].

Example 12 (projecting outPn
1). The spacePn

1 consists of
all polynomials onRn of degree lower than 1, i.e. only of the
constant function. HenceS, the span ofPn

1 on any nonempty
set {x1,…,x l} , Rn is span{~1}. Consequently,(1=l )~1~1

t
is a

projector onto that space and we get6

Kij ° 1¹
1
l
~1~1

t
� �

K 1¹
1
l
~1~1

t
� �� �

ij
(56)

Note that in the standard SV problem this modification of kij

leads to the same solution due to the constrainto i(a i ¹ ap
i ¼

0.

Example 13 (projecting out Pn
2). Pn

2 consists of all
constant and linear functions on {x1,…,x l}. Here S ¼

span({v0,…,vn}) with
v0 : ¼ (1, …,1)

vi : ¼ (xi1, …,xil ) for i [ 1, …,n

In the case ofl # n þ 1 already a linear model will suffice
for reducingRreg[f] to 0. In this case the solution of the
quadratic optimization problem is just 0 asKij will have
rank 0 after the projection.

For l . n þ 1 we will have to transformv0,…,vn into an
orthonormal basis e0,…,en of S, e.g. by applying the Gram–

Schmidt procedure. This in turn allows us to construct an
orthogonal projector ontoS and the corresponding modified
matrix from Kij.

As one can observe, only cpd functions of order up to 2
are of practical interest for SV methods as the number of
additional constraints and projection operations increases in
a combinatoric way thereby rendering the calculations com-
putationally infeasible form . 2.

8. Discussion

A connection between SV kernels and regularization
operators has been shown, which may provide one key to
understanding why SV machines have been found to exhibit
high generalization ability. In particular for the common
choices of kernels, the mapping into feature space is not
arbitrary but corresponds to good regularization operators
(see examples 3, 4 and 6). For kernels, however, where this
is not the case, SV machines may show poor performance
(example 5). Consequently the regularization framework
enables us to analyze the regularization properties of kernels
used in practice.

Capacity control is one of the strengths of SV machines;
however, this does not mean that the structure of the learn-
ing machine, i.e. the choice of a suitable kernel for a given
task, should be disregarded. On the contrary, the rather gen-
eral class of admissible SV kernels should be seen as another
strength, provided that we have a means of choosing the right
kernel. The newly established link to regularization theory can
thus be seen as a tool for constructing the structure consisting
of sets of functions in which the SV machine (approximately)
performs structural risk minimization (e.g. Vapnik, 1995). In
other words it allows to choose an appropriate kernel given
the data and the problem specific knowledge.

For completeness an explicit construction of the regular-
ization operators for polynomial kernels has been given in
order to provide corresponding operators not only for trans-
lation invariant kernels. To make things more transparent
Appendix A contains a worked through example for com-
puting a SV kernel for a specific choice of regularization
operators.

Note that the regularized risk approach can also be dealt
with in a reproducing kernel Hilbert space (RKHS) approach
which may lead to sometimes more elegant exposition of the
subject, see Kimeldorf and Wahba (1971); Micchelli
(1986); Wahba (1990); Girosi (1997); Scho¨lkopf (1997).

Finally the regularization framework made it possible to
extend the class of admissible kernels to those defined by
conditionally positive definite functions — a class of
kernels that do not necessarily have to satisfy Mercer’s
condition.

A simple consequence of the proposed link is a Bayesian
interpretation of support vector machines. In this case the
choice of a special kernel can be regarded as a prior on the
hypothesis space withP[f] ~ exp(¹ l

2kP̂fk2).

6 Curiously enough the matrix we obtain by this method is identical to the
one that is being diagonalized in Kernel PCA (Scho¨lkopf et al., 1996). This
is clear as projecting out the span of constant polynomials is equivalent to
centering in feature space.
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Future work will be necessary for understanding
Vapnik’s capacity bounds (Vapnik, 1995) from a regulari-
zation network point of view.
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Appendix A A worked through example

In this section we will construct a support vector kernel
for the regularization operator

kP̂fk2 ¼ 〈P̂f·P̂f 〉 ¼ 〈f·P̂p
P̂f 〉 ¼ kf k22 þ

∑n

i ¼ 1
k]xi

f k22 (A1)

This example is taken from Girosi et al. (1993) and used to
illustrate our reasoning in detail. For ease of notation
assumef:R → R.

A corresponding representation ofP̂
p
P̂ in Fourier space (̃f

denoting the Fourier transform off) yields

kP̂fk2 ¼

∫
R

dwlf̃ (w)l2(1þ w2) (A2)

or equivalently (cf. Section 5, Eq. (20))P(w) ¼ 1/(1 þ w2).
In order to satisfy the self consistency condition (Eq. (13)),
we have to compute the inverse Fourier transform ofP(w) to
obtain the Green’s functions ofP̂

p
P̂ (cf. Eq. (21)). This leads

to a kernel of the form

k(x,x9) ¼ e¹ lx¹ x9l (A3)

A function expansion in terms of this Laplacian kernel (it
has the same shape as a Laplacian distribution but should
not be confused with the latter at all) however, may not
always be desirable as it is by far not as smooth as regres-
sions using a Gaussian kernel (see Fig. 7).

Appendix B Ridge regression

Another frequently used method for selecting the regular-
ization operator is to selectD (see Eq. (11)) to be the unit-
matrix (Dij ¼ d ij). This approach often is called ridge regres-
sion and is a very popular, method in the context of shrink-
age estimators. Now one may pose a similar question as in
Section 4, namely regarding the equivalence of ridge regres-
sion and support vectors. No answer is available for a direct
equivalence, however, we will show that one may obtain
models generated by the same type of regularization opera-
tors. The requirement for an equivalence of the latter type
would be

Dij ¼ D(xi ,xj) ¼ 〈(P̂k)(xi , :)·(P̂k)(xj , :)〉 ¼ dij (B1)

for all possible choices ofx i [ Rn. Unfortunately this
requirement cannot be met for the case of the Kronecker
d, as Eq. (B1) implies the functionD(x0,.) to be nonzero
only on a set with (Lebesgue) measure 0. The solution is to
change the finite Kroneckerd into the more appropriated-
distribution, i.e.d(x i ¹ x j).

By a similar reasoning as in Proposition 1, one can see
that this is true fork(x, y) being the Green’s function of̂P.
Note that as a regularization operator,(P̂p

P̂)1=2 is equivalent
to P̂, as we can always replace the latter by the former
without any difference in the regularization properties.
Therefore, without loss of generality, we will assume that
P̂ is a positive semidefinite endomorphism. Formally we
hence require

〈(P̂k)(xi , :)·(P̂k)(xj , :)〉 ¼ 〈dxi
(:)·dxj

(:)〉 ¼ dxi ,xj
(B2)

Fig. 7. Left: Laplacian kernel. Right: regression with a Gaussian (j ¼ 1) and a Laplacian kernel (kernel width 2) of the data shown in Fig. 4.
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Again, this allows us to connect regularization operators and
kernels (we have to find the Green’s function ofP̂ to satisfy
the equation above). For the special case of translation
invariant operators denoted in Fourier space we can associ-
ateP̂ with Pridge(w), leading to

kP̂fk2 ¼

∫����� f̃ (w)
Pridge(w)

�����
2

dw (B3)

Comparing Eq. (B3) with Eq. (20) leads to the conclusion
that the following relation between kernels for support
vector machines and ridge regression has to hold:

P̃SV(w) ¼ lPridge(w)l2 (B4)

This also explains the good performance of ridge regression
models in a smoothing regularizer context (the squared
norm of the Fourier transform of kernel functions describes
the regularization properties of the corresponding kernel)
and allows us to transform support vector machines to
ridge regression models and vice versa. Note, however,
that we are loosing the sparsity properties of support
vectors.
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