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Proteomic signatures for histological types of lung
cancer
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We performed proteomic studies on lung cancer cells to elucidate the mechanisms that deter-
mine histological phenotype. Thirty lung cancer cell lines with three different histological back-
grounds (squamous cell carcinoma, small cell lung carcinoma and adenocarcinoma) were sub-
jected to two-dimensional difference gel electrophoresis (2-D DIGE) and grouped by multivariate
analyses on the basis of their protein expression profiles. 2-D DIGE achieves more accurate
quantification of protein expression by using highly sensitive fluorescence dyes to label the
cysteine residues of proteins prior to two-dimensional polyacrylamide gel electrophoresis. We
found that hierarchical clustering analysis and principal component analysis divided the cell
lines according to their original histology. Spot ranking analysis using a support vector machine
algorithm and unsupervised classification methods identified 32 protein spots essential for the
classification. The proteins corresponding to the spots were identified by mass spectrometry.
Next, lung cancer cells isolated from tumor tissue by laser microdissection were classified on the
basis of the expression pattern of these 32 protein spots. Based on the expression profile of the
32 spots, the isolated cancer cells were categorized into three histological groups: the squamous
cell carcinoma group, the adenocarcinoma group, and a group of carcinomas with other histo-
logical types. In conclusion, our results demonstrate the utility of quantitative proteomic analysis
for molecular diagnosis and classification of lung cancer cells.
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1 Introduction

Lung cancer is a leading cause of cancer mortality worldwide
and its incidence continues to increase [1]. Lung cancers are
classified as small cell lung carcinoma (SCLC) or non-small

cell lung carcinoma (NSCLC). NSCLC consists of three
major histological subtypes: squamous cell carcinoma
(SCC), adenocarcinoma (AC) and large cell carcinoma (LCC)
[2]. The histological typing of lung cancer correlates with its
clinical features. SCLC is a high-grade neuroendocrine
tumor characterized by its propensity for early metastasis
and a short doubling time. Therefore, most patients with
SCLC present at an advanced stage and, despite chemother-
apy and radiotherapy, the prognosis is generally poor [3]. In
contrast, NSCLC is often localized at the time of diagnosis
and is surgically resectable. However, prognosis for patients
with NSCLC is variable, in part because lung cancers fre-
quently show histological heterogeneity such as AC with
SCC component. Although the histology of lung cancer is
important in establishing a therapeutic strategy, the molecu-
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lar backgrounds determining particular histological pheno-
types are obscure.

The development of lung cancer is a multi-step process
that includes activation of oncogenes such as ras, myc,
EGFR, and c-kit and inactivation of tumor suppressor genes
such as p53, p16, Bcl-2, and FHIT [4]. Such genetic altera-
tions can affect the entirety of mRNA and protein expression
in an interactive function-related manner and result in com-
plex cancer phenotypes. Therefore, the development of lung
cancer cannot be attributed to aberration in any single gene
or protein and, in order to understand the mechanisms
underlying cancer biology and to develop effective ther-
apeutic strategies, comprehensive approaches to multiple
genes and proteins are required. To study the biology of lung
cancer, proteome technology has been used to establish the
profile of protein expression in lung cancer and to identify
novel patterns of aberrant protein expression [5–12].

Here, we used 2-D DIGE to study the protein expression
patterns associated with the histology of lung cancer cells.
Quantitative protein expression was assessed by multivariate
analysis and statistical learning methods. As the majority of
lung cancer tissues contain mixtures of different cell types,
we utilized well-characterized lung cancer cell lines to cap-
ture the protein expression patterns associated with particu-
lar histological types of lung cancer. The patterns were then
used to classify lung cancer cells isolated from tumor tissues
by laser microdissection. We identified by MS the proteins
corresponding to the informative protein spots.

2 Materials and methods

2.1 Cell lines, clinical materials and protein extraction

The lung cancer cell lines used had a histological back-
ground of: (i) squamous cell carcinoma (PC-1, PC-10, RERF-
LC-AI, SQ-5, LC-1/Sq, LC-1F, LK-2, EBC-1, QG-56, and
VMRC-LCP); (ii) small cell carcinoma (Lu-130, Lu-134, Lu-
135, Lu-139, Lu-140, Lu-165, PC-6, MS-1, SBC-3, and SBC-5);
and (iii) adenocarcinoma (A549, PC-3, PC-9, PC-14, RERF-
LC-KJ, RERF-LC-MS, RERF-LC-OK, LC-2/ad, ABC-1, and
VMRC-LCD). The lung cancer cell lines PC-1, PC-3, PC-6,
PC-9, PC-10, and QG-56 were obtained from Immuno-Bio-
logical Laboratories (Gunma, Japan). The cell lines A549, PC-
14, RERF-LC-KJ, LC-2/ad, SQ-5, LC-1/Sq, LC-1F, RERF-LC-
AI, Lu-130, Lu-134, Lu-135, Lu-139, Lu-140, Lu-165, and MS-
1 were obtained from RIKEN Cell Bank (Ibaraki, Japan). The
cell lines ABC-1, RERF-LC-MS, RERF-LC-OK, LK-2, EBC-1,
VMRC-LCD, VMRC-LCP, SBC-3, and SBC-5 were purchased
from Health Science Research Resources Bank (Osaka,
Japan). All cell lines were maintained in the optimal medium
until use. When the cells reached 80–90% confluence, they
were washed twice with PBS, scraped off into a tube, and
briefly centrifuged. The cell pellets were incubated in a lysis
buffer containing 6 M urea, 2 M thiourea, 3% CHAPS, and
1% Triton X-100 for 30 min on ice. After centrifugation at

15 000 rpm for 30 min, the supernatant (cellular protein
fraction) was recovered and the protein concentration was
measured with a Protein Assay Kit (Bio-Rad, Hercules, CA,
USA). The protein sample was adjusted to pH 8.0 with
30 mM Tris.

The tissue specimens were obtained from tumors surgi-
cally resected at National Cancer Center Hospital in 2002 and
2003. This study was approved by the institutional review
board of National Cancer Center. All of the patients provided
informed consent. The tissue samples were from 13 ACs,
13 SCCs, 2 large cell neuroendocrine carcinomas (LCNECs),
1 LCC, and 1 SCLC. The mean age of patients was 68 years
(range 48–81 years). A detailed description of the specimens
is presented in Table 1. Laser microdissection followed by
2-D DIGE was performed according to our previous report
[13]. The pathological diagnosis was established by experi-
enced pathologists. Briefly, O.C.T.-embedded frozen tissue
blocks were cut into 10 mm thick issue sections with a Leica
CM 3050 S (Leica, Milton Keynes, UK). The tissue sections
were placed on a membrane-coated slide glass (Leica), fixed
with 95% ethanol for 30 s and washed in water. After being
soaked in 10% Mayer’s hematoxylin (Muto Pure Chemicals,
Tokyo, Japan) for 1 min, they were washed twice with
95% ethanol and once with water, each for 10 s. The neigh-
boring section was occasionally stained with a standard

Table 1. Clinical variables of lung cancer patients

Variable Number

Gender
Male 22
Female 8

Mean age (range) 68 (48–81)

Histological types
Adenocarcinoma (AC) 13
Squamous cell carcinoma (SCC) 13
Large cell neuroendocrine carcinoma (LCNEC) 2
Large cell carcinoma (LCC) 1
Small cell carcinoma (SCLC) 1

Stage
I (IB) 10
II (IIB) 13
III (IIIA) 7

Differentiation
Well 4

(AC 4/SCC 0)
Moderate 13

(AC 6/SCC 7)
Poor 9

(AC 3/SCC 6)

Background lung
Usial interstitial pneumonia 5
Emphysema 1
Normal lung 4
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hematoxylin and eosin method to support the diagnosis. All
staining procedures were performed on ice. The area for
microdissection was determined by microscopic observation
and recorded with Laser Microdissection Version 3.1.0.0
(Leica). Laser microdissection was then performed with a AS
LMD (Leica). Cancer cells were collected directly into lysis
buffer at a rate of 1 mm2 of area microdissected per 2-D
PAGE image required. The protein sample was adjusted to
pH 8.0 with 30 mM Tris.

2.2 Fluorescence labeling of protein samples

An internal control mixture was made by mixing portions of
the 30 cell line samples. The labeling reaction was per-
formed according to the manufacture’s instruction and our
previous report [13]. In brief, 30 mg protein sample from the
cell lines, or protein lysate corresponding to a 3 mm2 area of
microdissected cancer cells, was reduced by incubation
with tris-(2-carboxyethyl)phosphine hydrochloride (TCEP)
(Sigma) for 60 min at 377C. The reduced samples were then
labeled with Saturation Cysteine Dye (Amersham Bio-
sciences, Buckinghamshire, UK) for 30 min at 377C. The
characteristics of Saturation Cysteine Dye have been de-
scribed elsewhere [14]. The internal control sample, which
was a mixture of equal amounts of the cell lines, was
labeled with Cy3 and the samples from individual cell lines
or from microdissected tissues accounting for 3 mm2 area
were labeled with Cy5. The labeling reaction was terminated
with an equal volume of lysis buffer containing 130 mM

DTT and 2.0% Pharmalyte (Amersham Biosciences). Then
Cy3-labeled internal control sample and Cy5-labeled experi-
mental samples were mixed. The volume of mixture was
adjusted to 1460 mL with lysis buffer containing 65 mM DTT
and 1.0% Pharmalyte. All labeling procedures were per-
formed in the dark.

2.3 2-DE

2-D PAGE was performed as described elsewhere with
some modifications [13]. Briefly, the fluorescence-labeled
proteins were separated by 2-D PAGE, with the first
separation by isoelectric point with IEF and the second
separation by molecular weight with SDS-PAGE. Each
labeled protein sample, volume of 1460 mL was divided into
triplicate IPG dry strip gels (24 cm length, pI range be-
tween 3.0 and 10; Amersham Biosciences); one gel was
rehydrated with 420 m protein sample and each sample was
separated in triplicate gels. After rehydration for 12 h, IEF
was performed with an IPGphor (Amersham Biosciences)
for a total of 80 kVh at 207C. After IEF, the IPG gels were
equilibrated with equilibration buffer containing 6 M urea,
50 mM Tris-HCl (pH 8.8), 30% glycerol, and 1.0% SDS for
15 min at room temperature. The equilibrated IPG gels
were applied onto 9–15% polyacrylamide gradient gels and
sealed with low melting temperature agarose (Amersham
Biosciences), and the proteins were separated at 207C for

15 h at 17 W per 12 gels with an EttanDalt II (Amersham
Biosciences). All electrophoresis procedures were perform-
ed in the dark.

2.4 Image acquisition and quantification of protein
spots

After electrophoresis, the gels were scanned at appropriate
wavelengths for Cy3 and Cy5 dyes with a MasterImager 2640
(Amersham Biosciences). The DIA mode of DeCyder soft-
ware (Amersham Biosciences) was used to determine the
margins of the spots, quantify the spot intensities, and cal-
culate relative spot intensity as the ratio between the total
intensity of the gel and the intensity of each individual spot.
The BVA mode of DeCyder software was used to standardize
the relative spot intensity of the Cy5 image to that of the Cy3
image in the same gel. The standardized spot intensity was
then averaged across the triplicate gels. Standardized inten-
sity was integrated and exported as an xml file to the data-
mining software.

2.5 Multivariate analysis of protein expression
profiles

Hierarchical clustering was performed by calculating Pear-
son correlations to determine the distances between the
samples and by using the algorithm of Ward to construct the
tree with GeneMaths software (Applied Maths, Sint-Martens-
Latem, Belgium). Principal component analysis (PCA) was
used as a dimension-reduction technique with Impressionist
software (GeneData, Basel, Switzerland).

To identify the informative protein sets for classification,
we used a leave-one-out cross-validation method with
Impressionist software (GeneData). We developed a classifi-
cation rule by applying a support-vector-machine algorithm,
where a linear hyperplane in the multi-dimensional protein
expression space separates the samples according to the
existing group structure with a maximal margin for each
sample. The performance of the classification rule is eval-
uated by a leave-one-out cross-validation. In this study, three
groups of lung cancer cell lines, the SCC group, the AC
group and the SCLC group, were used to train the support
vector machine. A spot ranking method was used to rank the
spots according to their contribution to the classification on
the basis of the expected alteration of cross-validation error
rate by removing the spot. The classification performance of
the developed patterns was further validated using the sur-
gical specimens of lung cancer.

2.6 Identification and functional classification of
proteins corresponding to protein spots

To identify the proteins corresponding to the spots, the pre-
parative gel containing 500 mg labeled-protein was prepared.
As the fluorescence labeling changed pI and molecular
weight of protein spots, all proteins had to be labeled for a
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preparative gel. The gel image of the preparative gel was an-
alyzed by BVA-mode of DeCyder software and the spots of
interest were recorded in a text file. The automated spot
recovery robot, SpotPicker (Amersham Biosciences), recov-
ered the spots in a 96-well plate. In-gel digestion was per-
formed as described previously [15] and the tryptic peptides
were subjected to mass spectrometric study. PMF analysis
was performed with a Q-Star Pulser-i equipped with the
oMALDI ion source (Applied Biosystems, Framingham, CA,
USA). The eluted peptides were mixed with saturated dihy-
droxybenzoic acid (DHB) in 50% ACN/0.1% TFA and spot-
ted onto a target plate. All mass spectra were externally cali-
brated with a mixture of three peptides included in the
Sequenzyme Peptide Mass Standards kit (Applied Biosys-
tems): des-arg1-bradykinin (Mr 904.4681), angiotensin I
(Mr 1296.6853) and glu1-fibrinopeptide B (Mr 1570.6774).
Mass spectra were processed with the Analyst QS and
MASCOT program and a search of the Swiss-Prot database
was performed with a mass tolerance of less than 100 ppm.
The protein ranked at top in Analyst QS and/or MASCOT
program was considered to be the corresponding one.
The identified proteins were classified functionally on the
basis of category in GeneCards (http://genecards.bcgsc.ca//
index.html).

3 Results

3.1 Clustering of 30 lung cancer cell lines and
identification of important spot sets for
histological classification

We used 2-D DIGE to generate the protein expression pro-
files of 30 lung cancer cell lines and 30 lung cancer cell spe-
cimens isolated from lung cancer tissue by laser micro-
dissection. To select reproducible spots and to avoid spots
specific to in vitro or in vivo situations, we selected 131 pro-
tein spots present in all Cy3 and Cy5 images. We used hier-
archical clustering to interpret the pattern of protein expres-
sion. A dendrogram created on the basis of similarities of
protein expression profiles across the 30 lung cancer cell
lines showed that they were broadly divided into two groups
corresponding to their histological background (Fig. 1A).
Tree (a) consisted of ten SCLC cell lines, and the remaining
cell lines formed the other tree (b), suggesting that the pro-
tein expression pattern of SCLC cell lines might be sub-
stantially different from those of the other cell lines. All SCC
cell lines belonged to branch (e). In contrast, nine of the AC
cell lines were clustered in two branches (c) and (d), and one
AC cell line (PC-3) was located in branch (e) with the SCC
cell lines. AC cell lines seem to have greater heterogeneity
compared with cell lines of other tissue types. We attempted
to validate the results of clustering by using another unsu-
pervised classification method, PCA. PCA visualizes the
relatedness of protein expression, avoiding the deterministic
and arbitrary nature of hierarchical clustering. Visual

assessment of relationships between the cell lines indicated
that all lung cancer cell lines, except the AC cell line PC-3,
formed groups according to their histological type of origin.
Consistent with the results of hierarchical clustering analy-
sis, SCLC cell lines formed a distinct group with a wide
margin separating SCLC cells from the other cells. Overall,
both unsupervised classification methods demonstrated that
the histological groups of lung cancer cell lines have certain
protein expression patterns that distinguish them from the
other groups.

We selected the informative spots for the classification by
use of a spot ranking method. The classification error rate
was calculated as a function of the number of top-scoring
spots used for discrimination. We found that spot sets con-
sisting of the 11, 32 or 64 best-scoring spots minimized the
classification error rate (20%), and the error rate did not
change until all spots were used (data not shown). These
three sets of protein spots appear to be representative of the
histological background of lung cancer cells and are candi-
dates as markers for histological classification.

The discrimination performance of the three best-scor-
ing spot sets was evaluated by unsupervised classification
methods. Figure 1C shows the results of hierarchical clus-
tering of the lung cancer cell lines on the basis of the
expression profile of the 32 selected protein spots. The den-
drogram shows that all cell lines were clearly divided
according to their histological type of origin (Fig. 1C). In
contrast to the results of clustering analysis using all spots
(Fig. 1A), the SCC cell line group formed a separate major
tree and the SCLC cell line group was clustered close to the
AC cell line group. This change was probably a result of the
spot ranking method removing spots distinguishing SCLC
cell lines from the other cell lines; as a consequence, spots
with unique expression patterns in SCC cell lines would have
more significant effects on clustering. PCA with the 32 spots
also showed better discrimination of the three cell line
groups than when all spots were used for the analysis: the
three cell line groups were separated from each other by
wider margins, and the AC cell line PC-3 was located to-
gether with the other AC cell lines (Fig. 1D). We also per-
formed hierarchical clustering and PCA of the cell lines with
the spot sets consisting of the 11 or 64 best-scoring protein
spots. The cell lines were generally well grouped according to
their original histology, but several cell lines were clustered
with groups of different histological background (data not
shown). Therefore, we selected the 32-spot set for further
studies.

3.2 Localization of the 32 protein spots on 2-D gels
and identification of proteins corresponding to
the spots

Figure 2A shows the localization of the 32 protein spots on
the 2-D gels. The spots were distributed over the entire gel
image. The intensity of some spots was differentially regu-
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Figure 1. Statistical analysis of
30 lung cancer cell lines as a
function of their protein expres-
sion profiles. (A) Dendrogram of
hierarchical clustering analysis.
The cell lines and their histology
of origin are listed with color-
coding on the left. (B) Three-
dimensional plot of principal
component analysis (PCA). The
apparent groups yielded by PCA
are enclosed in circles. Note that
the PC-3 cell line, which was
located with the SCC cell lines in
branch (e) in hierarchical clus-
tering analysis, is located sepa-
rately from any other cell line
group. (C) Two-way hierarchical
clustering analysis using the
intensity of the selected
32 spots. (D) Three-dimensional
plot of PCA using the intensity of
the selected 32 spots. The
apparent groups yielded by PCA
are enclosed in circles.

lated in the various cell lines. For example, spots 3141, 812
and 2463 had higher intensities in AC, SCC and SCLC cell
lines, respectively (Fig. 2B). Because the classification is
based on standardized spot intensities, which were gener-
ated by taking the ratio between Cy5 intensity and Cy3
intensity, visual differences in spot intensity on the Cy5
image between the cell line groups do not necessarily exactly
match the numerical data used for the classification.

Mass spectrometric studies were performed on all 32
protein spots and identified 14 of them. The results of mass
spectrometric identification are summarized in Table 2.

3.3 Laser microdissection of lung cancer tissues and
protein expression profile

We examined whether the 32 spots could be used to clas-
sify lung cancer cells in vivo according to their histological
phenotype. Lung cancer tissues contain many types of

non-tumor cells, including normal counterpart cells,
fibroblasts, various inflammatory cells and proliferating
vascular structures. Such cellular heterogeneity of tumor
tissues could prevent accurate quantitative expression
analysis, because each cell population has its own pro-
teome. For more accurate proteomic analysis, we isolated
lung cancer cells by laser microdissection and then
extracted the proteins from the cells. Figure 3 shows the
process of laser microdissection. The diagnosis was per-
formed with a 10 mm thick tissue section stained with
conventional HE staining (left panel), and laser micro-
dissection was used to isolate cells from the neighboring
sections stained with hematoxylin. The proteins were
extracted from the isolated cells, labeled with Cy5, mixed
with the Cy3-labeled internal control mixture and then
separated by 2-D PAGE. An area of approximately 1 mm2

of cancer cells was collected for each 2-D image on a large
format gel.
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Table 2. List of spots informative for the classification of lung cancer cells

Spot
no.a)

Access.
no.b)

Protein name MS
scorec)

Match
peptides

MS/MS
scored)

Co-
verage
(%)

Observed Theoretical Spot ran-
kinge)

AC/SCC

Functionf)

mass
(kDa)

pI mass
(kDa)

pI

537 2 2 2 2 2 2 2 2 2 2 16 2

812 P30101 Protein disulfite iso-
merase A3

634 14 2 33.7 65.9 5.6 56.8 6.0 23 isomerase activity

900 P05209 Tubulin-alfa-1 407 6 2 18.8 62.0 5.1 50.2 4.9 17 major constituent mi-
crotubules

928 P00352 Aldehyde dehydro-
genase 1A1

283 6 2 16.8 59.4 6.5 54.7 6.3 18 free retinal binding

1077 P50395 Rab GDP dissociation
inhibitor beta

266 5 2 15.1 51.1 6.4 50.7 6.1 21 GDP/GTP exchange
reaction

1412 2 2 2 2 2 2 2 2 2 2 14 2

1465 O75874 Isocitrate dehydrogenase 3
alfa

546 10 2 21.1 44.7 6.2 46.7 6.5 7 isocitrate/isopropylmalate
dehydrogenase

1477 P08865 40S ribosomal protein SA 844 9 2 33.2 40.6 4.8 32.9 4.8 13 laminin receptor
1567 2 2 2 2 2 2 2 2 2 2 5 2

1748 P04406 Glyceraldehyde 3-phosphate
dehydrogenase

73 3 2 6.0 37.2 9.5 35.9 8.6 12 glycolysis/gluconeogene-
sis

1753 2 2 2 2 2 2 2 2 2 2 2 2

1778 P00359 Glyceraldehyde 3-phosphate
dehydrogenase

80 3 2 11.0 37.2 9.7 35.9 8.6 15 glycolysis/gluconeogene-
sis

1981 P06753 Tropomyosin alfa3 733 12 2 33.8 32.8 4.6 32.8 4.7 25 cytoskeleton actin filament
stabilization

2049 2 2 2 2 2 2 2 2 2 2 32 2

2065 2 2 2 2 2 2 2 2 2 2 24 2

2094 O00299 Chloride intracellular channel
protein 1

134 2 2 8.0 31.7 5.2 26.9 5.1 27 chloride ion channel

2185 2 2 2 2 2 2 2 2 2 2 29 2

2200 P00938 Triosephosphate isomerase 124 2 2 7.0 29.9 6.7 26.5 6.5 10 triosephosphate isomer-
ase

2208 2 2 2 2 2 2 2 2 2 2 28 2

2281 2 2 2 2 2 2 2 2 2 2 19 2

2326 2 2 2 2 2 2 2 2 2 2 11 2

2401 2 2 2 2 2 2 2 2 2 2 9 2

2463 P32119 Peroxiredoxin 2 234 5 2 23.2 26.7 5.6 21.9 5.7 3 redox regulation
2540 2 2 2 2 2 2 2 2 2 2 20 2

2642 2 2 2 2 2 2 2 2 2 2 2

2665 Q01469 Fatty acid-binding protein 221 4 2 35.6 23.7 6.4 15.2 6.6 1 lipid metabolism
2694 2 2 2 2 2 2 2 2 2 2 8 2

2726 2 2 2 2 2 2 2 2 2 2 22 2

2738 2 2 2 2 2 2 2 2 2 2 26 2

2983 2 2 2 2 2 2 2 2 2 2 6 2

3088 2 2 2 2 2 2 2 2 2 2 30 2

3141 P09382 Galectin-1 259 5 47 23.7 23.0 5.0 14.6 5.3 4 Carbohydrate binding

23 spotsg)

97%h)

a) Spot numbers correspond to those in Fig. 2
b) Accession no. according to Swiss-Prot
c) MS score was generated by Analyst QS
d) MS/MS score was generated by MASCOT
e) Spots were ranked according their contribution to the classification
f) Proteins were functionally classified according to Amigo ontology
g) Number of spots with which the classification error rate was minimal
h) Average classification accuracy of cross-validation analysis
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Figure 2. (A) Representative 2-D image of a Cy3-labeled protein
mixture from 30 lung cancer cell lines. The 32 best-scoring pro-
tein spots for classification are circled; spot numbers correspond
to those in Table 2. (B) Differential expression of proteins be-
tween cells of different origin is shown.

The cells were categorized according to the expression
pattern of the 32 spots. In the dendrogram of hierarchical
clustering, the microdissected lung cancer cells were divided
into two major trees (Fig. 4A). One tree (a) consisted of nine
ACs (AC group 1) and another tree (b) was formed by the
remaining cells, including the other four ACs (AC group 2).
Each AC group contained lung cancer cells from tumors
with various clinical stages and degrees of differentiation,
indicating that the expression patterns of the 32 spots were
not able to distinguish the ACs on the basis of their clinical
stage and differentiation. All SCC cells were clustered in two
branches, (d) and (g). All SCC samples with clinical stage III
and poor differentiation were located in branch (d) (SCC
group 1), whereas all samples in branch (g) were in the early
clinical stage, and all except one were moderately differ-

entiated (SCC group 2). Although these observations suggest
the possible association of proteomic pattern with clinical
stage, a larger number of samples would be required to con-
firm the correlation.

We also performed PCA of lung cancer cells in vivo on the
basis of the expression levels of 32 spots (Fig. 4B). The lung
cancer cells formed three groups: the AC group, the SCC
group, and a group of carcinomas with other histological
types. Because the variances due to histological differences
might be greater than those due to clinical stage or differ-
entiation, SCCs of late clinical stage and with poorly differ-
entiated histology were not distinguished from other SCCs
in PCA. Consistent with the results of the hierarchical clus-
tering study, SCLC, LCNEC and LCC seemed to be distin-
guishable from the SCC and AC groups. However, because
the sample size was not sufficiently large, it was not clear
whether they belonged to a certain distinctive group. The
spots were ranked according to their contribution to the
separation, and the results are summarized in Table 2.

4 Discussion

Histological type is one of the important clinical features of
lung cancer. Although the histological differentiation of lung
cancer can be assessed by monitoring the expression of
tumor markers such as CEA, CA 125, CYFRA 21–1, SCC,
and NSE [16], the molecular background corresponding to
histological variation is largely obscure. Here, we analyzed
protein expression profiles generated by 2-D DIGE by apply-
ing multivariate methods and statistical-learning analyses,
and found protein groups highly associated with the histo-
logical types of lung cancer. Lung cancer tissues are hetero-
geneous to various extents, and the majority of NSCLCs
contain lung cancer cells with different histological types. In
addition, lung cancer tissues include non-tumor cells, and
laser microdissection may not be able to remove all of them.
Therefore, we began our experiments with well-character-
ized lung cancer cell lines and used protein spots present in
cells both in vitro and in vivo. A similar strategy was
employed by Virtanen et al. [17] in an mRNA expression
study to integrate expression data from lung cell lines and
tumors; the genes differentially regulated between lung can-
cer cells in vitro and in vivo were removed to dissect away the
influence of contaminating non-tumor cells. In this study, to
utilize the common image of 2-D PAGE between in vitro and
in vivo study, Saturation Cysteine Dye was used to label pro-
tein samples. As Saturation Cysteine Dye has high-sensitivity
for spot detection, small amount of proteins from laser
microdissected tissues can generate the gels of large-scale
2-D PAGE [13]. Previously, we identified the protein expres-
sion patterns corresponding to the histology of lung cancer
tissues using 2-D DIGE with the other type of fluorescent
dye, Minimal Dye (Amersham Biosciences) [18]. As the 2-D
profiles generated by Saturation Cysteine Dye and those by
Minimal Dye are different [14], the protein expression pat-
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Figure 3. 2-D-DIGE of lung cancer cells isolated by laser microdissection. A frozen section of lung cancer tissue
was stained with conventional hematoxylin-eosin staining (left panel). The neighboring section was stained with
hematoxylin (middle left) and the tumor cells were recovered from that section by means of laser microdissection
(middle right). The proteins were extracted from the microdissected lung cancer cells, labeled with the fluorescent
dyes for quantitative expression study and separated by 2-D-PAGE (right panel).

terns corresponding to the histological type of lung cancer
tissues were examined using Saturation Cysteine Dye in this
report. We found that the proteins identified as informative
for the histological classification of cells in vitro also classi-
fied cells in vivo according to their histology. These results
demonstrate that the expression patterns of these proteins
capture certain histological characteristics that are main-
tained in cell lines after long-term culture. In addition, our
findings suggested that a pattern developed in cell lines can
be applied to tumor tissue samples, giving more credence to
the applicability of intervention experiments in cell lines to
human tissues.

We found that the AC cell line, PC-3, was not classified
with the other AC cell lines. A transcriptomic study has also
revealed that this cell line had a different mRNA expression
pattern from the other AC cells [17]. These results suggest
that the cells either might dedifferentiate toward the char-
acteristics of SCC or SCLC, or that SCC or SCLC sub-
components in AC tumors might clonally expand.

Laser microdissection removed the surrounding stromal
cells, which would have affected the protein content of the
lung cancer cells. We considered that the effects of the stro-
mal components on the tumor cells would result in altera-
tions of the proteome and that such alterations would remain
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Figure 4. Multivariate studies
on lung cancer cells obtained by
laser microdissection. (A) Den-
drogram of hierarchical cluster-
ing analysis of all lung cancer
samples on the basis of 32 pro-
tein spots. The cell samples and
prior information about their
histology of origin are listed
with color-coding on the left.
(B) PCA of all lung cancer sam-
ples on the basis of 32 protein
spots. The cell samples were
plotted in three-dimensional
space as a function of the simi-
larity of their expression pro-
files.

in the frozen tissues. Thus we were able to observe the effects
of surrounding stromal cells on the tumor cells. To study the
proteome of stromal cells, we may be able to recover the
stromal cells using laser microdissection.

Of the 32 informative spots, mass spectrometry identi-
fied 14 of the corresponding proteins: three enzymes, two
structural proteins and two redox regulators, with the others
involved in glycogenesis, small molecule transportation, act-
ing as a receptor or ion channel. The list includes interesting
proteins in terms of squamous cell differentiation or cancer
progression. Fatty acid-binding protein 5 (FABP5) was con-
sidered as the most informative spot for the discrimination
of ACs from SCCs in our study, and a previous report showed
that FABP5 is associated with epidermal cell differentiation
[19]. Thus, FABP5 may also play an important role in the
differentiation of lung cancer cells. We also identified pro-
teins involved in cancer progression. The MGr1 antigen was
previously reported to be up-regulated in multidrug-resistant
gastric cancer cells [20, 21] and was later found to be identical
to the human 37 kDa laminin receptor precursor [22]. Fur-
ther studies of these proteins will refine standard pathologic
analysis and give a new insight into lung cancer phenotypes
and their differentiation.

Proteomic classification of lung cancer cells resulted in
the unexpected identification of a subgroup of SCC with
advanced clinical stage, suggesting that the subgroups of
SCCs reflect their malignancy. However, the sample size we
used was not sufficient for statistical evaluation of our spec-
ulation, and further large-scale studies will be required to
confirm these possibilities. Recently, proteomic approaches
have been employed to develop prognostic tumor markers
for lung cancer. Using 2-D PAGE, Hanash’s group reported
that a set of 20 protein spots could predict the survival of
patients with lung adenocarcinoma [10]. MALDI-TOF MS
has been used to identify a peptide expression pattern from
which the survival of NSCLC patients could be predicted [12].

Our results could support the idea that current proteomic
technologies can capture protein expression patterns corre-
sponding to the clinical features of lung cancer and that such
patterns will be useful to establish therapeutic strategies. The
protein expression patterns corresponding to the subgroups
with poor survival or different therapeutic responses should
be considered in future studies. The patterns of tumors after
chemotherapy, with and without preceding radiotherapy,
should also be studied. As the proteins involved in these
patterns are strongly associated with certain clinical features
of lung cancer, studies on those proteins will lead to further
understanding of the biology of this disease.

This study was supported by a grant from Pharmaceuticals
and Medical Devices Agency of Japan.
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