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Metastasis is the principal event leading to death in individuals
with cancer, yet its molecular basis is poorly understood1. To
explore the molecular differences between human primary
tumors and metastases, we compared the gene-expression pro-
files of adenocarcinoma metastases of multiple tumor types to
unmatched primary adenocarcinomas. We found a gene-
expression signature that distinguished primary from metasta-
tic adenocarcinomas. More notably, we found that a subset of
primary tumors resembled metastatic tumors with respect to
this gene-expression signature. We confirmed this finding by
applying the expression signature to data on 279 primary solid
tumors of diverse types. We found that solid tumors carrying
the gene-expression signature were most likely to be associ-
ated with metastasis and poor clinical outcome (P < 0.03). These
results suggest that the metastatic potential of human tumors
is encoded in the bulk of a primary tumor, thus challenging the
notion that metastases arise from rare cells within a primary
tumor that have the ability to metastasize2.
The prevailing model of metastasis holds that most primary
tumor cells have low metastatic potential, but rare cells (esti-
mated at less than one in ten million) within large primary
tumors acquire metastatic capacity through somatic mutation2.
The metastatic phenotype includes the ability to migrate from
the primary tumor, survive in blood or lymphatic circulation,
invade distant tissues and establish distant metastatic nodules.
This model is primarily supported by animal models in which
poorly metastatic cell lines can spawn highly metastatic variants
if the process is facilitated by the isolation of rare metastatic nod-
ules, expansion of the cells in vitro and injection of these selected
cells into secondary recipient mice3,4. No direct evidence of this
genetic selection model has, however, been documented in
human tumors.

To study the molecular nature of metastasis, we analyzed the
gene-expression profiles of 12 metastatic adenocarcinoma nod-
ules of diverse origin (lung, breast, prostate, colorectal, uterus,
ovary) and compared them with the expression profiles of 64 pri-
mary adenocarcinomas representing the same spectrum of
tumor types obtained from different individuals. This compari-
son identified an expression pattern of 128 genes that best distin-
guished primary and metastatic adenocarcinomas (Fig. 1).
Notably, this gene-expression pattern associated with metastases
also seemed to be present in some primary tumors, resulting in

these tumors being misclassified as metastases (see Web Note A
and Web Table A). This observation suggested the hypothesis
that a gene-expression program of metastasis may already be pre-
sent in the bulk of some primary tumors at the time of diagnosis.

To test this hypothesis, we analyzed the metastases-derived
gene-expression program in several large gene-expression data
sets containing molecular profiles of primary solid tumors. First,
we analyzed 62 stage I/II primary lung adenocarcinomas5 for
expression of the metastases-associated genes defined above.
Hierarchical clustering in the space of these 128 genes identified
two main clusters of primary tumors with gene-expression pro-
files that were highly correlated with the original primary-tumor
versus metastases distinction (P = 0.002; Fig. 2a and see Web
Note A and Web Table A online). This finding confirmed that the
gene-expression program associated with metastasis was
detectable in a subset of primary lung tumors.

If the presence of the metastasis program in a primary lung
tumor is biologically significant, one might expect the clinical
outcome of individuals with that gene-expression profile to be
worse, as death from lung adenocarcinoma is in most cases
attributable to metastasis6. Indeed, individuals whose primary
tumors bore the metastases-associated gene-expression program
had significantly shorter survival times compared with individu-
als whose tumors lacked it (P = 0.009; Fig. 2b).

We next sought to refine the metastases-associated gene-
expression signature to a smaller set of genes that reflected the
structure of the 128-gene set, reasoning that many of these 128
genes might not contribute greatly to the observed distinction. A
reduced set of 21 probes representing 17 unique genes nearest the
centroids of the two lung cancer clusters largely recapitulated the
observed outcome distinction (P = 0.010; Fig. 2c). Notably, we
found that random sets of 17 genes did not generate such distinc-
tions (P = 0.004; see Web Note A and Web Table A online), indi-
cating that the distinction was probably not achieved by chance
alone. Similarly, clustering the primary lung cancers in the space
of all genes on the microarray did not yield an outcome distinc-
tion (P = 0.8; Fig. 2d). These results support the idea that some
primary tumors are pre-configured to metastasize, and that this
propensity is detectable at the time of initial diagnosis.

To explore the generality of the refined gene-expression signature
associated with metastasis, we applied it to other tumor types. In 78
small stage I primary breast adenocarcinomas7, tumors bearing the
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zinc finger protein 212
MHC class II, DP beta 1
Runx1
v-rel
ribonuclease, RNase A family
myosin, heavy chain 11
purinergic receptor P2X
CD89 gene
RAN binding protein 3
cysteine knot superfamily 1
metallothionein 3
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human 28S ribosomal RNA gene
tyrosine kinase-like orphan receptor
moloney murine sarcoma viral oncogene homolog
potassium voltage-gated channel, shaker-related subfamily, beta member
friedreich ataxia gene
KIAA0296 gene product
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human factor X
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Hr44 antigen
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human P3 gene
myosin light chain kinase
aspartoacylase
zinc finger protein 148
microtubule-associated protein 1b
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inducible nitric oxide synthase gene
carboxypeptidase M
RAR-related orphan receptor B
phosphatidylinositol polyphosphate 5-phosphatase type IV
calponin 1
nuclear receptor subfamily 2, group F, member 2
human 18S rRNA gene
actin, gamma 2
human blood platelet membrane glycoprotein Ib-alpha
RNA binding motif protein 5
discs, large homolog 3
calcium channel, voltage-dependent, alpha 1E subunit
VAMP-associated protein B and C
protein kinase, cGMP-dependent, type II
heterogeneous nuclear ribonucleoprotein F
protocadherin 11 x-linked
pre-B-cell leukemia transcription factor 2
acyl-coenzyme A dehydrogenase
microtubule-associated protein, RP/EB family, member 3
nuclear hormone receptor TR3
phosphodiesterase 6A, cGMP-specific, rod, alpha
actin binding LIM protein
thyroid hormone receptor interactor 8
carboxypeptidase N
carbonic anhydrase XII
Sp17 gene
type 1 collagen, alpha2
ubinuclein 1
fibulin 2
survivin
KIAA0982 gene product
angiotensin receptor-like 1
RPB5-mediating protein
HMT1 hnRNP methyltransferase-like 2
elongation initiation factor 4E-like 3
heterogeneous nuclear ribonucleoprotein A/B
small nuclear ribonucleoprotein F
chromodomain helicase DNA binding protein 2
seven transmembrane domain protein
KIAA0618 gene product
fetal alzheimer antigen
hydroxysteroid (17-beta) dehydrogenase 12
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex
EST
cyclic AMP phosphoprotein
lamin B1
putative glialblastoma cell differentiation-related
notch homolog 3
KIAA0618 gene product
cytochrome c oxidase subunit VIIa polypeptide 2 like
nucleolar protein family A, member 2
securin (PTTG1)
glucose phosphate isomerase
DNA directed polymerase sigma
MSH homeo box homolog 2
muscle specific gene
presenilin 2
deoxyhypusine synthase
karyopherin alpha 6
Rb binding protein 1
KIAA0546 gene product
RAB5C
SMART/HDAC1 associated repressor protein
XPA binding protein 1
PP3781
regulator of nonsense transcripts 2
KIAA0532 gene product
nucleoporin 62kD
thymine-DNA glycosylase
E74-like factor 4
procollagen-proline
PRKA anchor protein 8
COX6B
fatty acid synthase
pericentrin 2
cytochrome c oxidase subunit VIIb
SLIT-ROBO Rho GTPase-activating protein
hypothetical protein MGC14480
CDK2-associated protein
DKFZP564F0522 protein
TBP-interacting protein
TAL1 (SCL) interrupting locus
KIAA1978 gene product
inosine triphosphatase
type 1 collagen, alpha 1
EST
MAD2
thymopoietin
seven transmembrane domain protein
tripartite motif-containing 37

Fig. 1 Genes associated with metastases. Columns represent human tumor samples (64 primary and 12 metastatic adenocarcinomas); rows represent the 128
genes (64 overexpressed and 64 underexpressed in metastases) that best distinguished primary from metastatic tumors using a weighted-voting algorithm in
leave-one-out cross-validation28 (cross-validation accuracy = 80%, P = 0.012 by permutation testing; see Web Note A and Web Table A online). Colorgram depicts
high (red) and low (blue) relative levels of gene expression. A ‘striped’ pattern was observed in some primary tumors (arrow), indicating the presence of a gene-
expression program associated with metastases.
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gene-expression signature at diagnosis were more likely to develop
distant metastases than those lacking this signature (P = 0.024; Fig.
3a). We observed a similar result in 21 prostate adenocarcinomas8

(P = 0.022; Fig. 3b). This result was also observed in a series of 60
medulloblastomas9 (P = 0.029; Fig. 3c), despite that fact that these
tumors are not adenocarcinomas. Collectively, these results argue
for generic gene-expression programs related to metastasis rather
than distinct mechanisms of metastasis in different tumor types.
Notably, the refined metastasis signature did not predict outcome
in diffuse large B-cell lymphoma10 (P = 0.497; Fig. 3d), consistent
with the idea that hematopoietic tumors have specialized mecha-
nisms for navigating the hematologic and lymphoid compart-
ments. It is important to note that the use of clustering as the
analytical method allowed us to define a metastasis signature on
one microarray platform (Affymetrix HU-6800 and HU-35k subA)
and apply it to samples analyzed using different microarray designs
(Rosetta inkjet arrays and Affymetrix U95A arrays).

The refined gene-expression signature associated with metas-
tasis contained eight upregulated and nine downregulated genes
(Table 1). None of these genes represent individual markers of
metastasis; rather, it was the signature taken as a whole that
seemed to contain predictive information (see Web Note A and
Web Table A online). Four of
eight upregulated genes are
components of the protein
translation apparatus (SNRPF,
EIF4EL3, HNRPAB, DHPS),
consistent with reports of
amplification and overexpres-
sion of translation factors in
tumor growth and invasion11.
The gene encoding securin
(PTTG1), an inhibitor of the
enzyme separase, is similarly
overexpressed in metastases.
Separase function is required
for sister-chromatid separation
during cell division, and degra-
dation of securin at the
metaphase–anaphase transi-
tion is essential for proper
chromosome segregation12,13.
A role for securin in cancer
pathogenesis is also supported
by the observation that
increased expression of securin
has been observed in tumors
with increased vascularity and
local invasion14. It is not yet
clear whether these properties
and the reported ability of
securin overexpression to
transform NIH3T3 cells are
related to its role in mitosis or
to some other mechanism15.

A considerable proportion of
the refined gene-expression sig-
nature associated with metasta-
sis seems to be derived from
non-epithelial components of
the tumor. Specifically, these
include the genes encoding the
type I collagens (COL1A1 and
COL1A2), whose expression is
restricted to fibroblasts, actin

γ2, myosin heavy chain, myosin light chain kinase and calponin
(markers of smooth muscle), MHC class II DP-β1 and the tran-
scription factor RUNX1 (unique to hematopoietic cells). The
upregulation of collagen genes in primary tumors with metastatic
potential is consistent with recent observations that
epithelial–mesenchymal interactions are critical determinants of
tumor cell behavior16,17. High levels of type 1 collagen in metasta-
tic lesions and in the serum of individuals with metastatic disease
have also been reported18,19. Similarly, the downregulation of
expression of MHC class II in primary tumors that metastasize
probably reflects lower numbers of infiltrating professional anti-
gen-presenting cells (for example, dendritic cells and
macrophages) that are critical for effective anti-tumor immune
responses20. RUNX1 is also downregulated in metastasis-prone
tumors and is both a putative tumor suppressor21 and regulator
of MHC class II expression in hematopoietic cells (T.R.G., unpub-
lished data). The gene-expression signature associated with
metastasis may thus arise from both malignant and stromal ele-
ments in primary tumors. Notably, the large stromal component
of the signature would have been missed had only malignant
epithelial cells been isolated (for example, by laser capture
microdissection) before expression profiling.
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Fig. 2 Hierarchical clustering and Kaplan–Meier survival analysis in lung adenocarcinoma. a, Hierarchical clustering of 62
primary lung adenocarcinomas using 128 metastases-derived genes defined two predominant primary-tumor groups in
the resulting dendrogram. Colorgram depicts high (red) and low (blue) relative levels of gene expression. Vertical bar
(left) indicates genes that were originally expressed in primary tumors (black) or metastases (red). Horizontal bar (top)
indicates samples from individuals whose cancer was observed to be non-recurrent (black) or recurrent (red).
b, Kaplan–Meier survival analysis of clusters of individuals defined by 128 genes. c, Kaplan–Meier survival analysis of
clusters of individuals defined by the refined 17-gene signature. d, Kaplan–Meier survival analysis of clusters of individ-
uals defined by 9,248 highly varying genes in the data set.
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The data presented here support a model in which the propen-
sity to metastasize reflects the predominant genetic state of a pri-
mary tumor rather than the emergence of rare cells with the
metastatic phenotype. Such a model has recently been suggested
on theoretical grounds, but firm genetic data supporting this view
has been lacking22. The prevailing model predicts that the inci-
dence of metastasis is related to the number of cells susceptible to
metastasis-promoting mutations, and hence to tumor size.
Micro-metastases have, however, been observed in many individ-

uals with small, low-stage
tumors23. Metastases have also
been found in the absence of
clinically detectable primary
tumors24. It is thus possible that
the ability to form distant
metastases is a consequence of
particular mechanisms of
transformation as opposed to a
selection process favoring the
metastatic phenotype per se.
Further study will be required
to determine whether any sig-
nature genes are mechanisti-
cally important in the cascade
of events driving metastasis. It
should be noted that, although
it yielded statistically significant
results, our outcome predictor
was imperfect, suggesting that
additional correlates of tumor
behavior have yet to be identi-
fied or that larger data sets will
be required to generate more
robust classifications.

The gene-expression signa-
ture associated with metastasis
described here was probably
identifiable only because the
primary and metastatic tumors
in this analysis were unmatched.
The inclusion of tumors of dif-
ferent anatomical origin prob-

ably also enabled the definition of a tissue-independent signature
associated with metastasis. Although this signature has the
potential to be developed as a clinical diagnostic test, larger num-
bers of samples will be required to refine it and to determine if it
is sufficiently robust for clinical implementation.

Our findings should be distinguished from recent reports that
primary tumors and metastases from the same individual are more
similar to each other than either is to tumors from other individu-
als25. These observations probably reflect the fact that metastases

harbor many random genetic
changes that first arose in the
primary tumor from which they
were derived. By contrast, our
findings here concern compar-
isons across different tumor
types and an expression signa-
ture that classifies a subset of
primary solid tumors with a
metastatic phenotype.

These findings support the
emerging notion that the clini-
cal outcome of individuals
with cancer can be predicted
using the gene-expression pro-
files of primary tumors at diag-
nosis7,26. Most previous
studies have predicted
response to therapy, however,
and it is not clear whether such
gene expression–based predic-
tors reflect sensitivity to treat-
ment or more fundamental

Table 1 • The 17-gene signature associated with metastasis

Gene Gene name GenBank ID

Upregulated in metastases
SNRPF Small nuclear ribonucleoprotein F AI032612
EIF4EL3 Elongation initiation factor 4E-like 3 AF038957
HNRPAB Heterogeneous nuclear ribonucleoprotein A/B M65028
DHPS Deoxyhypusine synthase U79262
PTTG1 Securin AA203476
COL1A1 Type 1 collagen, α1 Y15915
COL1A2 Type 1 collagen, α2 J03464
LMNB1 Lamin B1 L37747

Downregulated in metastases
ACTG2 Actin, γ2 D00654
MYLK Myosin light chain kinase U48959
MYH11 Myosin, heavy chain 11 AF001548
CNN1 Calponin 1 D17408
HLA-DPB1 MHC Class II, DPβ1 M83664
RUNX1 Runt-related transcription factor 1 D43969
MT3 Metallothionein 3 S72043
NR4A1 Nuclear hormone receptor TR3 L13740
RBM5 RNA binding motif 5 AF091263
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Fig. 3 Broad diagnostic utility of the signature associated with metastasis in solid tumors. Kaplan–Meier analyses of clus-
ter-defined primary-tumor subsets using the 17-gene signature associated with metastasis in a, breast adenocarcinoma
(78 individuals); b, prostate adenocarcinoma (21 individuals); c, medulloblastoma (60 individuals); and d, large B-cell
lymphoma (58 individuals).
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aspects of tumor cell biology. The fact that the gene-expression
signature described herein is predictive of metastasis argues that
the clinical behavior of solid tumors is governed at least in part
by the intrinsic biological behavior of tumor cells rather than
simply by differential chemo- or radiosensitivity. In addition, no
previous study has provided evidence for a molecular signature
that is biologically informative in multiple tumor types. The
gene-expression signature described here may represent a com-
posite of multiple, tissue-specific metastasis programs. The
findings are also consistent with the existence of a molecular
program of metastasis that is shared by multiple solid-tumor
types, suggesting the possible existence of therapeutic targets
common to different cancers.

Methods
Cross-platform gene mapping. Analyzing the prognostic value of genes
associated with metastasis required defining common genes present on
multiple distinct microarray platforms. We carried out the initial primary-
tumor versus metastases comparison on Affymetrix Hu6800 and Hu35Ksu-
bA oligonucleotide microarrays (16,063 genes; ref. 27). Primary-tumor
gene-expression outcome data sets were initially created using Affymetrix
U95A (12,600 genes; lung5 and prostate8 adenocarcinoma), Affymetrix
Hu6800 (6,817 genes; medulloblastoma9 and large B-cell lymphoma10) and
Rosetta inkjet (24,479 genes; breast adenocarcinoma7) oligonucleotide
microarrays. We carried out cross-platform mapping of genes using Uni-
Gene build #147. We considered all genes that fell into the same UniGene
clusters from both platforms to be ‘mapped’ genes (for example, there were
9,376 common mapped genes between the Hu6800/Hu35KsubA and U95A
platforms; see Web Note A and Web Table A online).

Pre-processing of data. We re-scaled each data set to account for different
microarray intensities in a given set. We multiplied each column (sample)
in the data set by 1/slope of a least-squares linear fit of the sample versus a
reference (the first sample in the data set). We did this linear fit using only
genes that had ‘Present’ calls in both the sample being re-scaled and the
reference. We chose a typical sample (that is, one with the closest number
of ‘Present’ calls to the average over all samples in the data set) as reference.
Pre-processing of the data consisted of a thresholding step and then a filter-
ing step. We did thresholding using a ceiling of 16,000 units and a floor of
20 units. We then subjected gene-expression values to a variation filter that
excluded genes with minimal variation across the samples being analyzed
by testing for a fold-change and absolute variation over samples, compar-
ing max/min and max – min with predefined values and excluding genes
not obeying both conditions. We used a max/min < 3 and max – min < 100
(for example, 8,176 of 9,376 genes passed this variation filter for the initial
lung adenocarcinoma analysis).

Supervised prediction. We first compared 64 primary adenocarcinomas
(breast, prostate, lung, colon, uterus and ovary) to 12 metastatic adenocar-
cinomas (from the same spectrum of sites but resected from a variety of
end-organs) in the mapped and filtered gene space using the signal-to-
noise (Sx) statistic (see Web Note A and Web Table A online). We defined
primary tumors and metastases as classes 0 and 1, respectively. We identi-
fied the genes that best distinguished metastases from primary tumors
using a signal-to-noise metric: Sx = (µclass0 – µclass1 / σclass0 + σclass1) where,
for each gene, µclass0 represents the mean value and σclass0 represents the
standard deviation for that gene in all samples of class 0. We then applied a
weighted-voting classification algorithm as previously described and tested
it by ‘leave-one-out’ cross-validation28. Briefly, the weighted-voting algo-
rithm makes a weighted linear combination of relevant ‘marker’ or ‘infor-
mative’ genes obtained in the training set to provide a classification scheme
for new samples after marker-gene selection using the signal-to-noise sta-
tistic (Sx). In addition to computing Sx, the algorithm also finds the deci-
sion boundaries (halfway) between the class means: bx = (µclass0 + µclass1)/2
for each gene. To predict the class of a test sample y, each gene x in the fea-
ture set casts a vote: Vx = Sx (gx

y – bx) and the final vote for class 0 or 1 is
sign (Σx Vx). We calculated the total number of prediction errors in cross-
validation (for the primary-tumor versus metastases distinction) using
graded numbers of genes, and found that a final 128-gene model yielded

the minimal cross-validation error rate (see Web Note A and Web Table A
online). We used these 128 genes for analysis.

Hierarchical clustering. We used the Cluster and TreeView software to
carry out average linkage clustering, which organizes all of the data ele-
ments into a single tree with the highest levels of the tree representing the
discovered classes29. For pre-processing, we median-centered the genes
and arrays twice (median-polished) and then normalized the genes. We
used a weighted centered correlation for arrays to carry out clustering.

Selection of the 17-gene signature associated with metastasis. The 128
genes identified by supervised learning for the metastases versus primary-
tumor distinction (on the Affymetrix Hu6800/Hu35KsubA oligonucleotide
microarray set) had 169 analogs on the Affymetrix U95A oligonucleotide
microarray (owing to probe-set redundancy). We used the signal-to-noise
metric to determine the individual correlation for each of these 169 probe sets
with the two primary lung tumor clusters defined through hierarchical clus-
tering. We selected the top 21 probe sets with Sx > 0.4, which corresponded to
17 unique genes (see Web Note A and Web Table A online).

Permutation testing of the 17-gene signature associated with metastasis.
We selected 1,000 random sets of 17 genes from the pool of 11,388 highly
varying genes. We then used these gene sets to carry out 1,000 independent
clusterings of the primary lung adenocarcinomas, and subjected each clus-
tering to Kaplan–Meier survival analysis.

Statistical analysis. We created Kaplan–Meier survival curves using S-
Plus. We used the Mantel–Haenszel log-rank test to calculate the statisti-
cal significance (P value) of differences between survival curves. We car-
ried out two-tailed t-tests using S-Plus to determine the correlation
between individual genes in the signature associated with metastasis and
clinical outcome in each solid-tumor data set to determine whether any
single gene was solely capable of yielding statistically significant clinical
outcome differences.

URLs. Further details on data sets and analysis are available at http://www-
genome.wi.mit.edu/cancer/solid_tumor_metastasis. Information about S-
Plus is available at http://www.insightful.com.

Note: Supplementary information is available on the Nature
Genetics website.
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