
Ensemble Methods for Classification in Cheminformatics

Christian Merkwirth,*,‡ Harald Mauser,† Tanja Schulz-Gasch,† Olivier Roche,† Martin Stahl,† and
Thomas Lengauer‡

Computational Biology & Applied Algorithmics Group, Max-Planck-Institut fu¨r Informatik,
Stuhlsatzenhauseg 85, 66123 Saarbru¨cken, Germany, and Roche Pharma Research, Basel, Switzerland

Received May 4, 2004

We describe the application of ensemble methods to binary classification problems on two pharmaceutical
compound data sets. Several variants of single and ensembles models of k-nearest neighbors classifiers,
support vector machines (SVMs), and single ridge regression models are compared. All methods exhibit
robust classification even when more features are given than observations. On two data sets dealing with
specific properties of drug-like substances (cytochrome P450 inhibition and “Frequent Hitters”, i.e., unspecific
protein inhibition), we achieve classification rates above 90%. We are able to reduce the cross-validated
misclassification rate for the Frequent Hitters problem by a factor of 2 compared to previous results obtained
for the same data set with different modeling techniques.

1. INTRODUCTION

Ensemble methods have gained increasing attention over
the past years, from simple averaging of individually trained
neural networks1 for regression problems over the combina-
tion of thousands of decision trees toRandom Forests2 to
the boosting of weak classifiers where the training of each
subsequent classifier depends on the results of all previously
trained classifiers.3

In this study we concentrate on several binary classification
problems with a large number of input variables (descriptors).
Both input variables and binary output labels are related to
properties of the chemical compound under consideration.
One of these problems is to correctly identifyFrequent
Hitters (FH). Frequent Hitters are defined as molecules
generating hits in many different assays covering a wide
range of targets4 and therefore are not specific enough to be
suitable drug candidates.

Section 2 introduces the ensemble methods which we are
using in this study. In section 3 we describe our approaches
to feature reduction, while section 4 details the data sets on
which we perform our study and the concrete classification
procedures. In section 5 we discuss the results of the
evaluation of the proposed methods.

Throughout this document, the wordsVariable, descriptor,
and featurewill be used as synonyms. The same holds for
obserVation, sample, and data point. A model denotes a
classifier. An ensemble is a collection of models but can be
treated as a model itself.

2. ENSEMBLE METHODS

Ensemble methods were already considered in combination
with classification and regression problems arising in chem-
informatics,5-7 though with varying conclusions. With this

study we would like to compare several ensemble approaches
with single models and with linear models which are widely
used in cheminformatics. Due to the very high number of
possible combinations of ensemble techniques and underlying
model types we chose a cross-section of interesting variants
for this comparison. By this we want to give the reader hints
as to what combination could be useful for a particular
problem setting. We consider the following model types
which are described in greater detail in the Appendix:

• k-Nearest Neighbor Classifiers (k-NN)
• Support Vector Machines (SVM)
• Linear regression with ridge penalty (Ridge Regression)
We did not construct ensembles of linear ridge regression

models since we observed no noticeable benefit due to the
very low computational variance of this model type. Also
k-NN are used only in combination with preprocessing
methods that reduce the actual number of variables before-
hand since they are not able to cope directly with the very
high number of variables given in some of the data sets
investigated.

2.1. Ensemble Methods for Regression.For the regres-
sion setting, the combined output can either be a simple
averagefh(xb) ) 1/K∑k)1

K fk(xb) or a weighted averagefh(xb) )
∑kwkfk(xb) with ∑kwk ) 1, wherefk(xb) denotes the output of
thekth model for input vectorxb. According to Krogh et al.8

the following error decomposition of the pointwise ensemble
error e(xb) can be done:

Hereεj(xb) denotes the average error of the individual models
fk(xb), while aj(xb) is the variance of the individual models with
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respect to the average modelfh. Integrating the pointwise
ensemble errore(xb) over the input space yields an expression
for the generalization errorE of the ensemble modelfh:

According to eq 1, the ensemble generalization errorE is
always smaller than the average errorEh of the individual
models sinceAh cannot be negative. We can conclude that
an ensemble should consist of several good (lowEh) but
mutually uncorrelated models (largeAh). In practice, we often
observed that an ensemble outperforms even the best of its
constituting models in terms of generalization error for
regression problems.

2.2. Ensemble Methods for Classification.In the case
of binary classification the aim is to decide whether a sample
belongs to a certain class or not. Methods such as SVM
classifiers (see subsection A.2) accomplish this task by
constructing a separating hyperplane. The position of a
sample with regard to this hyperplane determines the
predicted output label. Other methods use a more regression-
like approach by approximating a continuous discriminant
function, that, when properly scaled to [0, 1], can be
interpreted as a confidence that a sample belongs to the class
of interest.9

When ensembling binary classifiers by averaging the
output of several individual models, considerations similar
to those in subsection 2.1 hold for the classification error.10

The output is here a continuous function which is compared
to a threshold of 0.5 to discriminate between both classes.
For dichotomies this procedure is equivalent to a majority
vote.

2.3. Random Subspace Method.For the Random Sub-
space approach a large number (here 75) of individual models
is trained on randomly chosen subsets of all available input
variables. The number of variables in each subset is typically
set to the square root of the total number of input features.
The k-NN model type is well suited for this approach since
the leave-one-out (LOO) error on the training data set can
be easily obtained. We then discard all models having an
LOO error worse than the median LOO error of all models
constructed, resulting in an ensemble consisting of 38 models.

A strong advantage of this method is that trainingN
classifiers on aD/N dimensional subset is faster than training
one classifier on allD variables for any training algorithm
with a time complexity higher thanO(D).

2.4. Out-of-Train Technique. The Out-of-Train (OOT)
technique is a method for assessing the extra-sample error
and can be regarded as a combination of traditional cross-
validation (CV) and ensemble averaging. Like in traditional
cross-validation, the data set is repeatedly divided into
training and test partitions. For one given partitioning, a
model is constructed only on samples of the training partition.
Test samples are not used for model selection, deriving of
stopping criteria or the like. The OOT output for one sample
of the data set is the average of the outputs of models for
which this sample was not part of the training set (out-of-
train) as depicted in Figure 1. The OOT output can be used
to compute estimates of the extra-sample error or extra-
sample classification rate.

Unlike Breiman’s Out-of-Bag (OOB) technique11 which
creates bootstrap replicates of the data set, the OOT technique

does not allow samples to occur repeatedly in the training
fraction of one model. This could impair some statistical
learning algorithms such as the proposed k-NN algorithm
(see subsection A.1). Similar to traditional CV, OOT tends
to overestimate the generalization error due to the smaller
size of each training partition. Unlike CV, it accounts for
the ensemble gain (see eq 1) by averaging the outputs of
several models. Displaying slightly overestimated error rates
should not contradict the conservative approach of this study.

3. FEATURE REDUCTION

When analyzing data sets with large numbers of descrip-
tors, it would be helpful to be able to sort out features that
are not related to the desired output property:

• If the number of input variables is large compared to
the number of observations, the effective number of degrees
of freedom may be too large for obtaining reliable estimates
of the model’s parameters.

• Most Machine Learning Techniques have a larger time
complexity than linear in the number of observations and/or
number of input variables which prohibits the analysis of
data sets with several hundred variables.

A key problem is to appropriately distinguish important
features from redundant ones. We therefore applied two
approaches to reduce the number of features:

• A conservative approach in which only clearly redundant
features were removed.

• A more aggressive approach in which after removing
redundant features a forward stagewise selection scheme is
used to determine up to 12most releVant variables.

3.1. Feature Reduction by Clustering.We first remove
constant and low-entropy variables and then pool variables
into clusters in which the absolute value of the pairwise
correlation coefficients exceeds 0.98. Finally we discard all

E ) Eh - Ah (1)

Figure 1. Averaging scheme for OOT calculation for an example
data set of 10 samples. On this data set, 20 models were trained.
Column j corresponds to modelj. For each model, samples used
for training are colored white, while samples not used for training
are colored gray. For easier reading, only output values for test
samples were printed on the respective row and column. To compute
the OOT output (grey values in the rightmost column) for theith
sample, the average over the output of all models for which this
sample was not in the training fraction is calculated (averaging over
all gray fields in a row).
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variables but a randomly chosen one from each of these
clusters.

We did not apply principal component analysis because
it leads to linear combinations of variables which would
interfere with the goal of a subsequent selection of a small
number of features that could be subsequently interpreted
by human experts.

3.2. Forward Stagewise Selection.Forward stagewise
selection is a greedy-type algorithm that iteratively constructs
a subset of relevant variables. It starts with one randomly
chosen variable as initial subset and computes the LOO error
for all combinations of one of the remaining variables with
the variables in the current subset. The variable that improves
the LOO error most is added to the current subset. This
procedure is repeated until the error does not improve any
further or the number of features in the selected subset
exceeds a predefined limit. To prevent selecting an irrelevant
initial feature, it is removed after a second feature has been
selected by the algorithm describe above. Still, this discarded
feature could be selected again in a later stage if it actually
turns out to be important. We tested the stability of this
redundancy removal and feature selection process by com-
puting histograms of the selected variables (see Figure 2).
Preferring high-entropy variables would not be beneficial at
this point since high entropy does not necessarily include a
high correlation with the output variable we want to
approximate.

For this selection k-NN models without metric adaption
have been used since their sensitivity toward noise in the
input variables prevents the selection of irrelevant features.
Additionally, they allow the efficient computation of the
LOO error.12

4. APPLICATION TO ROCHE DATA SETS

4.1. Data Sets.The proposed method has been applied to
two data sets:

FH TheFrequent Hittersdata set consists of 902 observa-
tions with 1814 descriptors for each sample. The Frequent
Hitters set contains 479 molecules coming from the analysis
of HTS hit list (experimental part) refined by the vote of

eleven medicinal chemists (expert part). The non-Frequent
Hitters set consists of a diverse selection of 423 drug
molecules. The large number of 1814 descriptors was
generated to assess the variable selection process. 1481 of
the 1814 descriptors have been computed using the Dragon
software,13 150 are CATS descriptors,14 120 are Ghose and
Crippen (GC) descriptors,15 63 are additional topological,
electronic, count, and structural descriptors.16 To compare
results with a previous artificial neural network (ANN)
model,4 we have extracted a lower-dimensional version of
the data set using only GC descriptors which is denoted as
FH GC.

CYP. All data used in theCytochrome CYP3A4data set
were collected in a CYP3A4 inhibition screening effort at
Roche. Each compound was assigned to one of three classes,
according to the determinedIC50 value. Compounds belong-
ing to classMedium with 1 µM e IC50 e 50 µM were
eliminated from the data set. ClassLow contained 186
compounds withIC50 < 1 µM. ClassHigh contained 224
compounds withIC50 > 50 µM. The final CYP3A4 data
set consists of 410 observations with 329 descriptors. The
descriptor set consists of 146 2D-descriptors from MOE,17

the 120 Ghose and Crippen descriptors (GC),15 and an
additional set of 63 topological, electronic, count, and
structural descriptors.16 Again, a lower-dimensional variant
of this data set was compiled using only GC descriptors as
input variables which is denoted as CYP GC.

4.2. Comparison of Methods.Table 1 and Figure 3 show
the cross-validated classification rates and cross-validated
Matthew’s correlation coefficients (CC) for two data sets
and the six different processing schemes described here:

SP.Single SVM classifiers were constructed on all input
variables of the respective data set, without removing
constant or redundant variables (see Appendix A.2). For each
cross-validation fold, the optimal SVM parameters were
determined by the OOT technique on the training samples.

EP. An ensemble of 15 SVM classifiers was constructed
on all input variables of the respective data set, without
removing constant or redundant variables. For each cross-
validation fold, the optimal SVM parameters were deter-
mined by the OOT technique on the training samples.

RS.A random subspace ensemble of k-NN classifiers was
constructed on all input variables. No topological parameters
had to be adjusted manually (see Appendix A.1).

RRS. Single SVM classifiers were constructed on the
respective data set. Constant and redundant variables have
been removed before as described in section 3.1. For each
cross-validation fold, the optimal SVM parameters were
determined by the OOT technique on the training samples.

RRE. An ensemble of 15 SVM classifiers was constructed
on the respective data set. Constant and redundant variables
have been removed before as described in section 3.1. For
each cross-validation fold, the optimal SVM parameters were
determined by the OOT technique on the training samples.

RR+FS.First, constant and redundant variables have been
removed from the respective data set. Then a forward
stagewise selection has been done to identify up to 12 most
relevant features as described in section 3.2. An ensemble
of 15 SVM classifiers was constructed on the identified
features. For each cross-validation fold, the optimal SVM
parameters were determined by the OOT technique on the
training samples.

Figure 2. Histogram of the variables selected in 20 cross-validation
runs of the feature selection algorithm described in sections 3.1 to
3.2 on the FH GC data set. Note that a variable can be selected at
most once in a run. Despite the varying composition of the training
data used for every run, the feature selection process exhibits a
significant overlap in the selected variables. While most variables
occur never or just once, variables 57, 63, and 14 are selected in
more than 12 out of 20 runs, variable 57 is present in all of the 20
runs.
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RI. For comparison, we construct single linear models by
means of ridge regression.

We used 20-fold cross-validation with 10% test fraction
for each partitioning. The test fraction of each fold was used
neither for any of the above-mentioned steps nor for deriving
scaling parameters or the like.

5. RESULTS AND DISCUSSION

5.1. OOT Performance on the Training Sets.From
Table 1 we can infer that constructing classifiers on a subset
of aggressively selected features (method RR+FS) is the
worst performing training scheme throughout. This result
suggests that it is not possible to construct an optimal
classifier on a minimal subset of features. Random subspace
ensembles (method RS) perform slightly better but fall still
into the group of the weakest models in this comparison.
They belong to the computationally least demanding methods
investigated in this study which could render them an
interesting ensemble variant for applications where the
computation time is a critical factor. The performance of
ridge regression seems to depend strongly on the character-
istics of the data sets. Though it always performs better than
methods RR+FS, nonlinear models seem to generally
outperform this linear method on both data sets.

Single or ensemble SVM classifiers (methods SP and EP)
not only are the best-performing on all data sets but also are
the most computationally demanding of the methods con-
sidered. Actually, the computational demand for SP is not
lower than for EP since for each SVM parameter setting an
ensemble has to be constructed to assess the OOT error for
model selection. Still, this result is astonishing since it
contradicts the belief that the generalization ability of
statistical learning techniques decreases for high dimensional
data sets. The almost vanishing difference between method
SP and EP might be caused by a high degree of correlation
of SVM classifiers in the ensemble. [The quadratic program-
ming problem arising from the SVM formulation has
typically a unique solution.] The ensemble gain of combining
highly correlated classifiers tends to be quite small. Never-
theless, Support Vector Machines seem to be a very
promising algorithm for a broad range of classification
problems, and both methods should be considered when
lowest error rates are crucial for a particular application.

Method RRE offers an attractive tradeoff between com-
putational complexity and classification accuracy. On most
data sets, the accuracy of this method is only slightly worse
than that of methods SP and EP, while the computational
demand is significantly smaller due to the prior redundancy
reduction. This makes method RRE a preferred choice when
one would like to combine the greater flexibility of nonlinear
models with a reduced computational effort for the training.

5.2. Frequent Hitters Data Set.We validated the stability
of the RRE model based on the 120 GC descriptors for the
Frequent Hitters data set by using the latest data set published
by Shoichet’s group. This data set is composed of 48
aggregators and 63 nonaggregators.18 Since the training and
the validation sets have no molecule in common, we checked
the overlap by performing PCA in GC space.

From Figure 4, which shows the score plot generated with
SIMCA-P+,19 we can conclude that the validation set is
covered by the training set. Then, we compare the results
produced by the SVM model to the ones of the ANN model
(see Table 2).The false negatives (FN) are compounds that
were found to inhibit proteins through aggregate formation
but were not classified as FH. Under the same training
conditions and with the same variables and identical obser-
vations, the SVM model seems more stable than the ANN
model. Indeed, the CCs for the cross-validation of training

Table 1. Cross-Validated Misclassification Rates (CV MCR),
Cross-Validated Matthew’s Correlation Coefficients (CV CC), and
Rounded Average Number of Descriptors (# vars) Used for
Constructing Respective Models on Both Data Sets as Described in
Section 4.1a

data set method # vars CV MCR CV CC

FH SP 1814 0.05( 0.02 0.91( 0.05
FH EP 1814 0.04( 0.02 0.92( 0.03
FH RS 43 0.07( 0.03 0.86( 0.06
FH RRS 1124 0.05( 0.02 0.9( 0.04
FH RRE 1122 0.05( 0.03 0.91( 0.07
FH RR+FS 12 0.11( 0.03 0.79( 0.07
FH RI 1814 0.06( 0.02 0.89( 0.05
FH GC SP 120 0.06( 0.03 0.88( 0.05
FH GC EP 120 0.06( 0.03 0.88( 0.06
FH GC RS 11 0.1( 0.03 0.79( 0.07
FH GC RRS 80 0.07( 0.04 0.86( 0.07
FH GC RRE 81 0.06( 0.03 0.87( 0.05
FH GC RR+FS 12 0.11( 0.03 0.78( 0.07
FH GC RI 120 0.1( 0.03 0.8( 0.07
CYP SP 329 0.06( 0.04 0.88( 0.09
CYP EP 329 0.07( 0.04 0.87( 0.07
CYP RS 19 0.1( 0.05 0.81( 0.09
CYP RRS 186 0.07( 0.04 0.85( 0.08
CYP RRE 187 0.07( 0.04 0.86( 0.09
CYP RR+FS 12 0.12( 0.05 0.76( 0.1
CYP RI 329 0.08( 0.05 0.84( 0.11
CYP GC SP 120 0.09( 0.04 0.83( 0.08
CYP GC EP 120 0.08( 0.05 0.83( 0.1
CYP GC RS 11 0.11( 0.06 0.77( 0.13
CYP GC RRS 61 0.1( 0.04 0.8( 0.09
CYP GC RRE 61 0.08( 0.04 0.83( 0.08
CYP GC RR+FS 12 0.12( 0.06 0.75( 0.12
CYP GC RI 120 0.1( 0.05 0.81( 0.09

a We averaged misclassification rates and cross-validated Matthew’s
correlation coefficients over the 20-folds of the cross-validation and
computed standard deviations for both quantities, given after the( in
the columns CV MCR and CV CC. Results were obtained with six
different training methods (see section 4.2). The best performing method
for each data set is printed in bold, the worst in italic letters. For easier
visual inspection the misclassification rates are also depicted in Figure
3.

Figure 3. Comparison of cross-validated misclassification rates
for all combinations of methods and data sets. Each data set exists
in two variants (large descriptor set/120 GC descriptors only).
Misclassification rates are averaged over 20 cross-validation folds.
Numerical values are also presented in Table 1.
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set are 0.87 and 0.81 for the SVM and ANN, respectively,
whereas the CC for the validation set are 0.62 and 0.48. This
observation is confirmed by an analysis of the chemical
structures of the misclassified compounds. The SVM ap-
proach yields a more consistent picture of common sub-
structures in the false positives (FP) and FN sets. Figure 5
depicts 6 representatives of the FN and 5 of FP.

Among the compounds erroneously classified as non-FH
(FN), some privileged structures for biogenic amine G-
protein coupled receptor (GPCR) are identified, e.g. com-
pounds FN6, and also steroids such as FN1. Several
compounds in the FN set, such as econazole (FN4), nicar-
dipine (FN2), and the protein kinase C inhibitor FN5, are
actually optimized druglike substances. Because of the
similarity between these compounds and others in the training
set of druglike compounds, this misclassification makes
sense: known drugs should not be classified as frequent
hitters even though such compounds may be able to
aggregate at high concentrations. The dihydro-indolone
substructure present in FN4 (ropinirole), which is a repre-
sentative of a cluster of 6 molecules, is also present only in
non-FH drug compounds in our training set.

For the group of compounds that is experimentally not
classified as FH (FP), the results may also be expected from
the composition of the training set. Since the GC descriptors

stand for functional groups or small substructures, we have
performed substructure searches in the FH training set with
parts of the misclassified compounds. For example, the
hydroxybenzoic acid moiety of FP1 is present in 25 FH and
only in 3 non-FH molecules; this finding is verified for
various substructures of other FP. Overall, the SVM models
clearly outperform the ANN method both in terms of
quantitative measures and consistency in a chemical sense.

5.3. Cytochrome CYP3A4 Data Set.The performance
of the RR+FS and SP models on the cytochrome CYP3A4
data set were also analyzed in more detail. The GC
descriptors were calculated for a validation set of 90
compounds that belong to a single structural class and
originate from a Roche drug discovery project.IC50 values
have recently been measured for these compounds. 40
compounds belong to classLow with IC50 < 1 µM and 50
compounds belong to classHigh with IC50 > 50 µM. To
see whether the new class of compounds is covered by the
RR+FS and SP models, we checked the overlap by perform-
ing PCA in GC space (see Figure 6). Although all validation
compounds belong to the same structural class, there is
considerable overlap with the training set. Only 5 compounds
of classHigh, which are located outside the area covered
by the training set (circled in Figure 6) were removed from
the validation set, resulting in a total of 85 compounds in
the validation set. False positives (FP) are compounds that
are not inhibitors of CYP3A4 but are classified as such (and
vice versa for the FN). The RR+FS and SP models give
CCs of 0.31 and 0.39 for the validation set compared to 0.73
and 0.85 for the cross-validation. We compared these results
with those of an earlier prediction tool based on the Partial
Least Squares (PLS) technique. The PLS model was built
on a diverse subset of 100 compounds out of the 410
compounds that were used to build the SVM models. Since
the results of this model crucially depend on the classification
thresholds, results are given for two different thresholds. At

Figure 4. Score plot of the PCA projection on the plane formed
by the 2 first PCs of the training (red points) and validation set
(blue points) of the Frequent Hitters (FH) model in the GC
descriptors space.

Table 2. Comparison of SVM (RRE) Model with a Previously
Described ANN Model4 on a Validation Data Set Consisting of 111
Compounds

ANN (GC) SVM (RRE GC)

True Positives (TP) 30 32
False Positives (FP) 10 5
True Negatives (TN) 53 58
False Negatives (FN) 18 16
CC Matthews 0.48 0.63

Figure 5. Six representatives of the FN and the five FP. These
compounds are misclassified by both ANN and SVM models.
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a threshold of 0.4 the PLS model seems to be more stable
than the SVM models for the validation set, resulting in a
CC of 0.52. Using a threshold of 0.5, the performance of
the PLS model is decreased to a CC of 0.36. Interestingly,
PLS and SVM based models perform similarly good in the
correct prediction of true positives (inhibitors); correct
prediction of true negatives (noninhibitors) is hardly possible
with any prediction method.

6. CONCLUSIONS AND OUTLOOK

We demonstrated the usage of ensemble methods for
classification problems arising within the process of drug
development. Ensemble methods bear the advantage of being
applicable to various types of underlying statistical learning
algorithms, from which we chose k-NN classifiers and
Support Vector Machines. Though more difficult to interpret,
these model types can cope with nonlinear problems where
linear methods suffer from high bias due to their limited
flexibility.

On all training data sets, ensembles of SVM classifiers
constructed with prior removal of redundant features (method
RRE) exceed a classification rate of 92% in the cross-
validation setting. On the Frequent Hitters classification
problem, we were able to improve previous results4 by
reducing the misclassification rate from 10% to 4%-5%
(methods SP/EP/RRS/RRE).

Results on the validation sets for the FH and CYP3A4
data sets show an overall improvement, even though not as
clear as on the training sets. While the ensemble models show
an improved performance in the FH validation, the perfor-
mance could not be improved for the CYP3A4 validation
set relative to previously build PLS models.

Despite careful application of validation procedures on the
training sets there is still a significant difference between
the cross-validated classification performance and the clas-
sification performance seen on the validation sets. In our
opinion this is caused to a lesser extent by classical
overfitting of the constructed models rather than by the
different distribution of the validation samples. This opinion
is encouraged by the comparison of the degree of overlap
of the validation set with the training set for the FH GC and
the CYP3A4 GC data sets. The discrepancy in classification
performance between training and validation set is lower for
the FH GC data sets which overlap more uniformly (see
Figure 4) than for the CYP3A4 GC data sets which overlap
less homogeneously (see Figure 6).

Chemical space is so vast that a training set which covers
it uniformly would be prohibitively large and therefore
difficult to obtain experimentally. To reduce the generaliza-
tion error outside the region of the chemical space covered
by the training set we would propose to further pursue the
TransductiVe Learning approach proposed by Vapnik.20

Furthermore, meaningful and generally valid descriptors are
difficult to generate for multiple-mechanism classification
problems.

We think that ensemble methods offer an interesting way
of creating well-performing classifiers in cheminformatics.
Additionally, the Out-of-Train technique as an ensemble
variant of the cross-validation allows for a combination of
training an ensemble of models and validation at the same
time. The Random Subspace method significantly accelerates
the construction of ensembles of nonlinear models on high-
dimensional data sets with as many as 1800 input variables
though it sacrifices some classification accuracy.

APPENDIX: DESCRIPTION OF MODEL TYPES

A.1. Nearest-Neighbor Models.A k-nearest-neighbor
model takes a kernel-weighted average over the observations
yi in the training set closest [Self-matches of data set points
(i.e. each point is considered to be its own nearest neighbor)
are prohibited by default since this would strongly bias the
error on the training set.] to the query pointxb∈ RD to produce
the outcome

whereNk(xb) denotes thek-element neighborhood ofxb, given
a proper metric. Common choices for the metric areL1, L2,
andL∞ norm. To compensate for irrelevant input dimensions,
distances are computed using a weighted metric:

The vectormb of metric coefficients is adjusted by a
Genetic Algorithm (GA) that works on a population of
vectors of metric coefficients. The GA starts with a popula-
tion of randomly initialized individuals. The higher the
dimensionD, the more of the initial metric coefficients are
artificially set to zero to favor sparse solutions. A fitness
value is assigned to each individual according to its leave-
one-out (LOO) training error. The smaller the error, the

Figure 6. Score plot of the PCA projection on the plane formed
by the first two principal components of the training (blue points)
and validation set (magenta points) of the Cyp3A4 model in the
GC descriptors space. The circled points are removed from the
validation set since they do not overlap with the training set.

Table 3. Comparison of Two SVM Models with a Previously
Described PLS Model on the Validation Set of 85 Compounds for
the Cyp3A4 Problema

SVM PLS

type, respectively threshold RR+FS SP 0.4 0.5

True Positives (TP) 35 35 36 36
False Positives (FP) 27 23 18 26
True Negatives (TN) 18 22 27 19
False Negatives (FN) 5 5 4 4
CC Matthews 0.31 0.39 0.52 0.36

a For the PLS model two different thresholds, 0.4 and 0.5, were used
to distinguish between both classes. Both SVM and PLS models were
constructed on the 120 GC descriptors.

f (xb) )
1

∑wi

∑
xbi∈Nk(xb)
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1

L
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higher the fitness value assigned. To create the individuals
of the next generation, two individuals of the current
generation are selected randomly with a probability propor-
tional to their fitness in order to create two offsprings by
straightforward crossover mating. Additionally, random
mutations in single coefficients of the offsprings are intro-
duced with a probability 0.2. To prevent losing good
solutions, the best solutions of the current generation are
copied into the next generation (N-elitist approach). The
population evolves over a predefined number of generations
or until the diversity within the population shrinks below
some given threshold.

The smoothing kernel weightswi are distance dependent
wi ) (1 - (di/dk+1)p)p, wheredi denotes the distance from
the query pointxb to theith nearest neighbor. The parameter
p of this smoothing kernel is chosen out of{0.0, 0.5, 1.0,
2.0, 3.0}. The number of nearest neighborsk is adjusted in
order to deliver smallest LOO error on the training set. For
our investigation we employed the ATRIA implementation
of a fast nearest neighbor algorithm12 that allows the efficient
computation of the LOO error.

A.2. SVM Classifiers. Support Vector Classifiers20,21

belong to the family ofLarge Margin Classifiers. Instead
of minimizing a loss function that measures the deviation
between model and training outputs, SVMs compute a
separating hyperplane that maximizes the margin between
both classes. This leads to a quadratic programming problem
with a unique solution that can be expressed in terms of
training points that lie on or violate the margin, the so-called
Support Vectors.

The primarily linear approach can be extended to nonlinear
problems by means ofkernels that provide a nonlinear
mapping from the input space to a possibly infinite-
dimensionalfeature spacein which the separating hyperplane
is constructed. Popular choices of kernels are as follows:

• Polynomial kernels
• Radial basis function (RBF) kernels with Gaussian basis

function
For the numerical experiments we used the libSVM22

package and applied radial basis kernels, as these yield
superior classification performance for most practical ap-
plications. Two main tuning parameters remain to be chosen,
the width γ of radial basis functions and the penalty
parameterC. They can be easily optimized by an exhaustive
search over a predefined set of parameter pairs (γ, C), e.g.
D‚gŒ{0.1, 1, 5, 10, 50} andC∈{1, 10, 100, 1000}, where
D is the number of input features. For each combination,
we compute the Matthew’s Correlation Coefficient (CC) with
the Out-of-Train technique (see subsection 2.4) and choose
the ensemble with highest OOT CC.

A.3. Ridge Regression.Ridge regression constructs a
linear modelŷ ) Xâ + â0, but instead of minimizing the
sum of squared residuals (y - Xâ - â0)T(y - Xâ - â0), it
minimizes the regularized loss function (Tikhonov regular-
ization):

The additional penaltyλâTâ shrinks the regression coef-
ficients â̂ toward zero, thereby moderately increasing bias
while considerably decreasing variance of the constructed
models. The penalty parameterλ g 0 controls the amount

of shrinkage and can be used to fine-tune the bias-variance
tradeoff. For this study, the optimal ridge penaltyλ is
automatically determined by LOO-CV9 on each training fold
individually. To apply ridge regression to a binary classifica-
tion problem, training outputs are coded asy ) 0.0, 1.0 and
a threshold of 0.5 is applied to discriminate between both
classes when doing predictions. Prior to model construction,
input variables are normalized by removing the mean and
dividing by the standard deviation for each variable sepa-
rately.
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