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The support vector machine algorithm together with graph kernel functions has recently been introduced to
model structure-activity relationships (SAR) of molecules from their 2D structure, without the need for
explicit molecular descriptor computation. We propose two extensions to this approach with the double
goal to reduce the computational burden associated with the model and to enhance its predictive accuracy:
description of the molecules by a Morgan index process and definition of a second-order Markov model for
random walks on 2D structures. Experiments on two mutagenicity data sets validate the proposed extensions,
making this approach a possible complementary alternative to other modeling strategies.

1. INTRODUCTION

Accurate predictive models applied early during the drug
design process can lead to substantial savings in terms of
time and costs for the development of new drugs. While
processing of chemical data involves many different tasks,
including for instance clustering, regression, classification,
or ranking, most of them are related toStructure-ActiVity
Relationship (SAR) analysis, that is, finding a relationship
between thestructuresof molecules and theiractiVity. We
employ the term activity here in a broad sense to refer to a
particular biological property the molecules exhibit, such as
their ability to bind to a particular biological target, their
toxicity properties, or their ADME (Absorption, Distribution,
Metabolism, Excretion) properties.

To build a model relating structure to activity, machine
learning methods require a set of molecules with known
activity, usually called thetraining set. Once adjusted on
the training set, the model can then be used to predict the
activity of new molecules. Decades of research in machine
learning and statistics provide many different methods to fit
a model. Each of them has its own specificities, and the
choice of a particular model is usually related to the final
objectives of the analysis (e.g., efficiency of the prediction
versus interpretability of the model). Nevertheless, an
important topic common to all models concerns the way
chemical compounds are represented.

While many descriptors related to global physicochemical
properties or to the 3D structures of molecules are often used,
we focus in this paper on the simpler 2D representation of
molecules, which we see as a labeled graph with atoms as
vertices and covalent bonds as edges. While this representa-
tion might appear too restrictive for some applications, it
appears sufficient to build state-of-the-art predictors for
properties such as mutagenicity.1

On the methodological side, working directly with this
representation requires the analysis, comparison, and clas-
sification of labeled graphs. Among the many different ways
to tackle this problem, two mainstream research directions
have emerged during the past decades. One direction involves
the use of graph algorithms to compare or classify graphs,
for instance by finding maximal or frequent common
subgraphs. Such approaches usually suffer from their com-
putational complexity (NP-hardness of subgraph isomor-
phism, exponential number of potential subgraphs) and are
usually based on heuristics or restricted to small-size graphs
and data banks. The second mainstream direction, particularly
in chemoinformatics, consists of transforming the graphs into
vectors using molecular descriptors, before applying the
whole panoply of statistical or machine learning tools to the
vector representations. This usually requires the selection of
a small number of features of interest, which is known to be
a difficult task, especially for noncongeneric data sets.1

An alternative direction has been explored recently in the
pioneering papers refs 2 and 3, using the theory of positive
definite kernels and support vector machines (SVM).4-6

SVM, an increasingly popular classification method in
machine learning and chemoinformatics7,8 for its good
performance on many real-world problems, possesses two
important properties. First, it theoretically allows learning
in very highspotentially infinitesdimensions thanks to a
heavy use of regularization;5 second, instead of an explicit
representation of data as vectors, it only requires inner
products between such representations, through what is
usually referred to as a positive definite kernel function.
Ushering in the avenue opened by SVM to implicitly map
molecules to infinite dimensional spaces, refs 2 and 3
introduce positive definite kernels between labeled graphs,
based on the detection of common fragments between
different graphs. These kernels correspond to a dot product
between the graphs mapped to an infinite-dimensional feature
space indexed by all possible finite-length fragments but can
be computed in polynomial time with respect to the graph
sizes. Encouraging experimental results suggest that this
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approach might be a valid alternative to the two mainstream
directions.

These graph kernels, however, are subject to several
limitations. First, the graph kernel has a computational
complexity roughly proportional to the product of the sizes
of the two graphs to be compared, which results in slow
implementation for real-world problems. Second, it might
not be optimal to use all fragments to characterize each graph
for at least two reasons: on one hand, some fragments may
contain relatively little information (e.g. a sequenceC - C
- C), while on the other hand, many fragments as defined
in refs 2 and 3 are irrelevant because they represent “tottering
paths” on the graph, that is, paths which return to a visited
vertex immediately after leaving it.

The purpose of this paper is to propose two extensions of
the original graph kernel, which try to address these issues.
The first extension is to relabel each vertex automatically in
order to insert information about the environment of each
vertex in its label. This has both an effect in terms of feature
relevance, because fragments of such labels contain informa-
tion about the environment of each atom, and computation
time, because the number of identical fragments between two
molecules significantly decreases. Second, we show how to
modify the random walk model proposed in ref 2 in order
to remove totters, without increasing the complexity of the
implementation. Each method is validated on two benchmark
experiments of mutagenicity prediction, showing the poten-
tiality of this approach by improving the original graph kernel
both in terms of speed and accuracy and reaching state-of-
the-art prediction performance.

The paper is organized as follows. After a brief review of
support vector machines and kernels in section 2, section 3
presents the graph kernels introduced in refs 2 and 3. The
following two sections introduce two extensions to these
graph kernels, with the double goal to reduce their compu-
tational complexity and to increase their relevance as a
similarity measure. Finally, we conclude with experimental
results in section 6. The current work is an expanded version
of a conference proceeding paper.9 We have included new
experimental results and a more thorough discussion.

2. SUPPORT VECTOR MACHINE

SVM4-6 is a machine learning framework for supervised
binary classification originally developed in the 1990s by
V. Vapnik and co-workers, although extensions to multiclass
classification, regression, and density estimation also exist.
We focus here on support vector machines for binary
classification, the task considered in our experiments.
Interested readers can find a more thorough presentation of
this algorithm and many related ones in ref 6.

Formally, given a set ofn objects (e.g., molecules)x1, ...,
xn ∈ X, and associated binary labels (e.g., active/nonactive,
toxic/nontoxic) denotedy1, ...,yn ∈ {-1, 1}, SVM produces
a classifierf:X f {-1, 1} that can be used to predict the
class of any new datax ∈ X. As mentioned in the
Introduction, the common approach in chemoinformatics
consists of representing a molecule by a set of descriptors,
and the molecular spaceX usually corresponds to the
Euclidian space Rd. In such vector spaces, the classifier
output by SVM is based on the sign of a linear function:
f (x) ) sign(〈w, x〉 + b), for some (w, b) ∈ X × R defined

below. Geometrically, a hyperplane〈w, x〉 + b ) 0 separates
the input spaceX into two half-spaces, and the prediction
of the class of a new point depends on the position of the
point on the one or on the other side of the hyperplane. When
the data set isseparable, i.e., when a hyperplane exists such
that the positive and negative examples lie on distinct sides
of the hyperplane, SVM chooses among the infinity of
separating hyperplanes the one with the largest distance to
the closest data point. This distance is known as themargin
of the hyperplane, and this particular hyperplane defines the
maximum marginclassifier, as illustrated in Figure 1.

More generally, in particular for nonseparable data sets,
the SVM algorithm finds the separating hyperplane by
solving the following optimization problem

whereC is a parameter and (u)+ ) max(u, 0). The rational
behind this optimization problem is to find a linear classifier
that reaches a tradeoff between the amount of errors on the
training set (as quantified by the second term of this sum)
and the smoothness of the classifier (as quantified by the
first term). In the extreme case, whenC ) +∞ and the data
set is separable, then no error is allowed on the training set,
and the classifier with largest margin is found. Classical
Lagrangian optimization theory shows that this problem is
equivalent to the following dual problem:

When the optimumR* is met,w writes asw ) ∑i)1
n Ri

*yixi,
and the decision functionf becomesf (x) ) sign(∑i)1

n Ri
*〈x,

xi〉 + b*), the valueb* being computed from theRi
* and the

xi.
A striking point of SVM lies in the fact that they can be

generalized to nonvectorial spacesX, and in particular to
the space of molecular compounds represented by their 2D

Figure 1. SVM finds the hyperplane〈w, x〉 + b ) 0 that separates
positive (white circles) and negative (black circles) examples with
a maximum marginγ. Here, a new example represented by the
white (respectively black) square is predicted as positive (respec-
tively negative).

min
w,b

1

2
||w||2 + C∑

i)1

n

(yi(〈w, xi〉 + b) - 1)+ (1)

max
R

∑
i)1

n

Ri -
1

2
∑
i,j)1

n

RiRjyiyj〈xi, xj〉

subject to :∑
i)1

n

Riyi ) 0 and 0e Ri e C, i ∈ [1:n] (2)
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or 3D structures, by embedding them to a vector spaceH
(often called the feature space) through a mappingΦ:X f
H and applying the linear SVM inH to the training points
Φ(xi), i ) 1, ...,n. Figure 2 illustrates this mapping process.
[Note that the step of feature extraction usually required by
machine learning algorithms can be seen as a particular
mappingφ:X f H ) Rd.] Indeed, an important remark is
that in the dual formulation (2), the data are only present
through dot-products: pairwise dot-products between the
training points during the learning phase, and dot-products
between a new data and the training points during the test
phase. This means that instead of explicitly knowingΦ(x)
for anyx ∈ X, it suffices to be able to compute inner products
of the form k(x, x′) ) 〈Φ(x),Φ(x′)〉 for any x, x′ ∈ H, in
which case the optimization algorithm rewrites

and the classification function becomesf(x) ) sign
(∑i)1

n Ri
*k(x, xi) + b*). The functionk is called a kernel. A

classical result states that any functionk: X × X f R can
be plugged in the SVM optimization problem as long as it
is symmetric and positive definite, the key point being that
it is sometimes easier to compute directly the kernel between
two points than computing their explicit representations as
vectors inH.

This property offers at least two major advantages. First,
it enables the straightforward extension of the linear SVM
to model nonlinear decision functions by using a nonlinear
kernel, while keeping its nice properties intact (e.g. unicity
of the solution, robustness to overfitting, etc.). Second, it
offers the possibility to directly apply SVM to nonvectorial
data, provided a kernel function exists to compare them. For
these reasons, an important research topic has emerged in
the past few years, focusing on the design of kernel functions
dealing with structured data10 such as strings, trees, or graphs.
Clearly choosing a kernel amounts to choosing an implicit
representation of the objects, and prior knowledge might
serve as a guide to design a suitable representation for a given
problem. A second and often contradictory constraint to take
into account is the necessity to have fast kernel computations,
as a naive SVM implementation might require the computa-
tion of n(n + 1)/2 kernel values.

In particular, different families of kernels for graphs have
recently been proposed, that naturally allow the molecules

to be represented by their 2D structures. Similarity is usually
assessed by walks occurring concurrently in the graphs, since
subgraphs characterization suffers from computational com-
plexity. The first approach is to simply count the number of
common walks. Ga¨rtner introduced in ref 11 several kernels
that count the number of walks with identical starting and
ending nodes, and in ref 3, he defines with co-workers
another family of kernels counting globally identical walks.
A somehow similar but more flexible approach is proposed
in ref 2 where the graph similarity is defined as the sum of
pairwise similarities of walks found in the two graphs,
weighted by a coefficient standing for the probability that
this particular pair of walks occur simultaneously in the two
graphs. This formulation, which forms the starting point of
our work, is presented in more details in the next section.

3. MARGINALIZED GRAPH KERNELS

In this section we define the basic notations and briefly
review the graph kernel introduced in refs 2 and 3, upon
which are based the extensions that will be presented in
sections 4 and 5.

3.1. Labeled Graphs.A labeled graph G) (V, E) is
defined by a finite set ofVertices V, a set ofedges E⊂ V ×
V, and a labeling functionl: V ∪ E f A which assigns a
label l(x) taken from an alphabetA to any vertex or edgex.
We let|V| be the number of vertices ofG, and|E| its number
of edges. We assume below that a set of labelsA has been
fixed and consider different labeled graphs (each labeled
graph corresponding to a particular molecular compound).
More precisely, if we associate a labeled graph to a chemical
compound, the set of verticesV corresponds to the set of
atoms of the molecule, the set of edgesE to its covalent
bonds, and these graph elements are labeled according to an
alphabetA consisting of the different types of atoms and
bonds. Note that we consider directed graphs here, so that a
pair of edges of opposite direction is introduced in the graph
for each covalent bond of the molecule. Figure 3 shows a
chemical compound seen as a labeled graph.

For a given graphG ) (V, E), we denote byd(V) the
number of edges emanating from the vertexV (i.e., the
number of edges of the form (V, u)), and byV* ) ∪n)1

∞ Vn

the set of finite-length sequences of vertices. Apath h∈ V*
is a finite-length sequence of verticesh ) V1 ... Vn with the
property that (Vi, Vi+1) ∈ E for i ) 1, ...,n - 1. The length
of a path is equal to the number of edges it is made of, and
we note|h| is the length of the pathh. We defineH(G) ⊂
V* to be the set of all paths of a graphG. The labeling
function l: V ∪ E f A can be extended as a functionl: H(G)
f A* where the labell(h) of a pathh ) V1 ... Vn ∈ H(G) is
the succession of labels of the vertices and edges of the
path: l(h) ) (l(V1), l(V1, V2), l(V2), ..., l(Vn-1, Vn), l(Vn)) ∈
A2n-1.

3.2. Marginalized Graph Kernels.As briefly mentioned
in the previous section, the kernel introduced in ref 2 is
derived from the generalmarginalized kernelsformulation.12

Figure 2. A feature mapΦ from the chemical spaceX to the
vector space Rd.

Figure 3. A chemical compound seen as a labeled graph.

max
R

∑
i)1

n

Ri -
1

2
∑
i,j)1

n

RiRjyiyjk(xi, xj)

subject to :∑
i)1

n

Riyi ) 0 and 0e Ri e C, i∈ [1 : n] (3)
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Marginalized kernels define a global similarity measure by
means of a simpler one expressed on auxiliary variables
introduced in the problem. In our case, these latent variables
consist of substructures of the graphs, and more precisely
they are paths, which are easier to handle than subgraphs.
In labeled graphs, label sequences are associated with the
paths of the graph, and their similarity is assessed by a string
kernel. Moreover, paths are here considered as random walks,
so that probability distributions are associated with the set
of paths of the graphs. The kernel between two graphs is
then defined as the expectation of the pairwise paths
similarity, according to their probability distributions.

The kernel introduced in ref 2 boils down to the following
formula wherepG1 andpG2 are probability distributions on

the set of pathsV1
* andV2

*, and the functionKL:A* × A* f
R is a (string) kernel between label sequences.

Reference 2 focuses on the particular case where the kernel
KL in (4) is the Dirac functionδ

thus accounting for a perfect similarity between paths if they
share the same label and null otherwise; and where, for a
graphG ) (V, E), the probabilitypG on V* factorizes as a
first-order random walk model:

To ensure that (6) defines a probability distribution onV*
(i.e., ∑V∈V*pG(V) ) 1), we must impose constraints on the
emission and transition probabilitiesps andpt.

This can be done, for example, by choosing parameters 0
< pq(V) < 1 for V ∈ V, an initial probability distributionp0

on V (∑V∈Vp0(V) ) 1), a transition matrixpa on V × V
(∑u∈Vpa(u|V) ) 1 for V ∈ V) positive only along edges
(pa(V|u) > 0 w (u, V) ∈ E), and by setting, for anyu, V ∈ V2

Under these conditions it can easily be checked that (6) is a
probability distribution onV* corresponding to a random
walk on the graph with initial distributionp0, transition
probability pa, and stopping probabilitypq at each step. In
particular, this implies that only paths have positive prob-
abilities underp: pG(h) > 0 w h ∈ H(G). Figure 4 shows
an example of this particular probabilistic model.

Following the definition introduced in ref 1, we letS (A)
be the set oflinear molecular fragmentstaken from A,
i.e., the set of sequences of bonds-connected atoms based
on the labels ofA. For a given fragments ∈ S (A) we
introduce a mappingφs:X f R defined for a given graph
G as φs(G) ) ∑h∈H(G)pG(h)δ(l(h),s). If we let KL be the
Dirac kernel, eq 4 can be written as a standard dot-product

based on the molecular fragments ofA:

The kernel (4) therefore maps the graphs into an infinite-
dimensional space where each dimension corresponds to a
particular substructure. This shows an analogy with the
fingerprints characterization of molecules widely used in
chemoinformatics.13 Molecular fingerprints encode a mol-
ecule as a (finite length) vector where each dimension
corresponds to a particular molecular substructure. Each
substructure is represented by a bit or an integer, that either
indicates the presence of the substructure in the molecule or
counts the number of times it appears.

There are however several important differences with the
approach illustrated above. First, while marginalized kernels
take into account every single molecular fragment to compare
the molecules, which is equivalent to dealing with an infinite-
dimensional feature vector, fingerprints only involve a
smaller number of features. [Usually between 150 and 2500,
but hashed-fingerprints provide a way to consider a much
larger number of features.] These substructures are carefully
chosen (based on prior chemical knowledge), and by focusing
on a restricted set of substructures, fingerprint description
of molecules may be more efficient if these features are
indeed relevant according to the learning task to perform.
On the other hand, because they consider a larger set of
substructures, marginalized kernels can detect features not
taken into account by standard fingerprints that may be useful
to account for molecular similarity. Another important
difference lies in the way of dealing with the substructures.
Instead of just checking the presence of molecular fragments,
marginalized kernels can quantify their occurrence in the
graph according to probability distributions. This approach
offers a more flexible way to evaluate the influence of the
substructures in the graph similarity. Note that the method
presented in ref 3 is equivalent to defining an infinite-
dimensional fingerprint counting the frequency of appearance
of the molecular fragments in the graphs.

Figure 4. A molecular graphG (left) and its feature-space
representationφ(G) (right). Here, ∀i, pq(Vi) ) 0.1, pa(Vj|Vi) )
1/d (Vi) iff ( Vi, Vj) ∈ E, and p0 can be chosen to be the
unifom distribution, i.e.,p0(Vi) ) 1/|V| ) 0.25. The values (1-
pq(Vi))pa(Vj|Vi) are shown along each edge (Vi, Vj) of the graph. (Note
that∑jpa(Vj|Vi) ) 1 ∀i). For the pathh ) (V1, V2, V3), we therefore
havel(h) ) (H, -, C, ), O) andp(h) ) 0.25 * 0.9 * 0.3 * 0.1. The
right-hand side of the picture shows such examples of paths possibly
occurring in the graph, together with their associated probabilities.

K(G1, G2) ) 〈Φ(G1),Φ(G2)〉

) ∑
s∈S(A)

φs(G1)φs(G2)

K(G1, G2) ) ∑
(h1,h2)∈V1

*×V2
*

pG1(h1)pG2(h2)KL(l(h1),l(h2)) (4)

KL(l1, l2) ) δ(l1, l2) ) {1 if l1 ) l2,
0 otherwise

(5)

pG(V1 ... Vn) ) ps(V1)∏
i)2

n

pt (Vi|Vi-1) (6)

{ps(V) ) p0(V)pq(V),

pt (u| V) )
1 - pq(V)

pq(V)
pa(u|V)pq(u)
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3.3. Graph Kernel Computation. While the kernel
definition (4) involves a summation over an infinite number
of paths, it can be computed efficiently using product graphs
and matrix inversions introduced in ref 3 and briefly recalled
below.

Given two labeled graphsG1 ) (V1, E1) and G2 ) (V2,
E2), theirproduct graphis defined as the labeled graphG )
(V, E) whose verticesV ⊂ V1 × V2 are pairs of vertices
with identical labels ((V1, V2) ∈ V iff l(V1) ) l(V2)), and an
edge connects the vertices (u1, u2) and (V1, V2) iff ( ui, Vi) ∈
Ei, for i ) 1, 2, andl(u1, V1) ) l(u2, V2).

Let us now define a functionalπ on the set of pathsH(G)
by

with

where ps
(1) and pt

(1) (respectively ps
(2) and pt

(2)) are the
functions used to define the probabilities of random paths
in (6) on the graphG1 (respectivelyG2).

If the label kernelKL is chosen to be the Dirac kernel (5),
then the kernel (4) only involves paths that can be found
concurrently in the two graphs. By construction of the
product graph, there is a bijection between this set of
common paths and the set of pathsH(G) of the product graph.
Using the definition of the functionalπ, it can then be shown
that

Define now the |V | × |V | transition matrix Πt )
(πt(V|u))(u,V)∈V2. Paths in the product graph can be generated
by raising this matrix to a particular power. If one now
defines the| V |-dimensional vectorπs ) (πs(V))V∈V , it can
be checked that

where1 is the|V |-dimensional vector with all entries equal
to 1 and therefore

The direct computation of a matrix inversion has a
complexity cubic in the size of the matrix. In the case of a
product graph, the size of the matrixΠt is at worst|V1| ×
|V2|, and this approach can be time-consuming. However,
this matrix is typically sparse, and savings can be achieved
using an approximation of the matrix inverse based on the
first terms of its power series expansion: (I - Πt)-1 ≈
∑i)0

N Πt
i. Generally speaking, if we note|M| the number of

nonzero elements of a matrixM, and d(M) its maximum
number of nonzero elements per line, computing the product
of two (n × n) sparse matricesA andB has a complexity of
O(|A|d(B)). Moreover, if we noted ) d (A), we haved (Ak)
e min(d k, n). From these two observations, it follows that
computing the sum∑i)0

N Ai has a complexity ofO(|A|
∑i)1

N-1min(di, n)).14 Note that if no hypothesis is made about
the value ofd, this complexity reduces toO(|A|nN).

By construction of the product graphG ) G1 × G2, we
have|V | e |V1| × |V2| and| E | e |E1| × |E2|. Moreover,
if d1 and d2 are the maximum degrees of the nodes ofG1

andG2, it follows that the maximum degree of the nodes of
the graphG is less or equal thand1d2. This means that the
size of the matrixΠt is bounded by|V1| × |V2|, its maximum
number of nonzero elements by|E1| × |E2|, and its maximum
nonzero elements per line byd1d2. It therefore follows that
the approximation of the matrix (I - Πt)-1 by the first N
terms of its power series expansion has a complexity of
O(|E1||E2|∑i)1

N-1min((d1d2)i,|V1||V2|)).
In the case where many vertices have identical labels, the

product graph used to compute the graph kernel has many
vertices too, since the number of vertices in the product graph
corresponds to the number of pairs of vertices with identical
labels. As a result, the computation of the graph kernel can
be time-consuming, and this method may be difficult to use
on large chemical data banks involving several hundred
thousand molecules. As an example, the computation can
take several hundred milliseconds on a recent desktop
computer to compute the kernel between two chemical
compounds with a moderate number of atoms (typically
between 10 and 50). Moreover, one might expect the search
of common path labels to be too naive to detect interesting
patterns between chemical compounds.

These two points constitute important issues to tackle in
order to use this type of graph kernels in real-world
applications. We now present two modifications of the
original kernel with the goals to increase its relevance as a
similarity measure between molecular compounds, usually
denoted as its expressive power, and to reduce its compu-
tational complexity.

4. LABEL ENRICHMENT WITH THE MORGAN INDEX

One possibility to address both issues simultaneously is
to increase the specificity of labels, for example by including
contextual information about the vertices in their labels. This
has two important consequences. First, as the label specificity
increases, the number of common label paths between graphs
automatically decreases, which shortens the computation
time. Second, this is likely to increase the relevance of the
features used to compare graphs, as paths are replaced by
paths labeled with their environment.

For the kind of applications we focus on in this papers
classification of chemical compoundssit seems natural to
consider the chemical environment of atoms. For instance it
makes sense to distinguish between atoms with similar labels
but that belong to different functional groups. As a first
attempt to define such a local environment, we propose to
introduce information related to the topological environment
of the vertices in the labeling function of the graphs.

To do so, we compute for each vertex of the graph an
index called theMorgan index,15 that is defined by a simple

π((u1, V1)(u2, V2) ... (un, Vn)) )

πs(u1, V1)∏
i)2

n

πt((ui, Vi)|(ui-1, Vi-1))

{πs(u1, u2) ) ps
(1)(u1)ps

(2)(u2),

πt((V1, V2)|(u1, u2)) ) pt
(1)(V1|u1)pt

(2)(V2|u2)

K(G1, G2) ) ∑
h∈H(G )

π(h)

∑
h∈H(G),|h| ) n

π(h) ) πs
TΠt

n1

K(G1, G2) ) ∑
n)1

∞

( ∑
h∈H(G ),| h| ) n

π(h))

) πs
T(I - Πt)

-11
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iterative procedure. Initially, the Morgan indices are equal
to 1 for every vertex. Then, at each iteration, the Morgan
index of each vertex is defined as the sum of the Morgan
indices of its adjacent vertices. Mathematically, if we letMi

be the vector of the Morgan indices computed at theith
iteration, this readsM0 ) 1 andMn+1 ) AdjMn, whereAdj is
the graph adjacency matrix and1 the unity vector. This
process is illustrated in Figure 5. The Morgan index was
initially developed to determine canonical representations of
molecules and is considered a good and fast solution to detect
graph isomorphism.

Note that the Morgan index associated with a particular
vertex aftern iterations actually counts the number of paths
of lengthn that start in that vertex and end somewhere in
the graph. This vertex descriptor has already been studied
in chemical graph theory and is known as theatomic length-n
walk-countdescriptor in the literature.16

Finally, given the Morgan indices aftern iterations, we
propose to augment the label of a vertex by its value, before
computing the marginalized graph kernel. This results in a
family of kernels (Kn)ng0, indexed by the number of iterations
for the Morgan index computation.

When the number of iterations increases, the topological
information vehiculated by the Morgan index becomes more
and more specific to the graphs. Pairs of vertices having at
the same time identical atom type and topological properties
are therefore less and less likely to occur. This results in a
systematic decrease of the computation time, because the
number of nodes of the product graph automatically de-
creases, but, on the other hand, the similarity between
molecules may be difficult to assess if their description
becomes too specific. This suggests that the step of the
Morgan process that performs the optimum trade off between
the uniform and the molecular-specific descriptions of
vertices needs to be found.

5. PREVENTING TOTTERS

A second avenue to modify the original graph kernel is to
modify the probability (6). This probability is the distribution
of a first-order Markov random walk along the edges of the
graph, killed with some probability after each step. We
propose to modify the random walk model to prevent
“totters”, that is, to avoid any path of the formh ) V1, ...,Vn

with Vi ) Vi+2 for somei. The motivation here is that such
excursions are likely to add noise to the representation of
the graph. For example, the existence of a path with labels
C-C-C might either indicate the presence of a succession
of 3 C-labeled vertices in the graph or just a succession of
2 C-labeled vertices visited by a tottering random walk. By
preventing totters, the second possibility disappears. Figure
6 illustrates this idea.

5.1. Modification of the Random Walk. A natural way
to carry out this modification is to keep the general kernel
definition (4) but modify the probability model (6) as follows

wherepi(.), pt(.|.), andpt(.|.,.) satisfy for any (u, V) ∈ V2:

Here we assume that 0< pq(V), pq
(0)(V) e 1 for each vertex

V, pa(‚|V) is a probability onV that is only positive on the
neighbors ofV, andpa(‚|w, V) is a probability onV that is
only positive on the neighbors ofV different fromw. This
model is simply the distribution of a second-order Markov
random walk, killed at each step with some probabilitypq(V)
(or pq

(0)(V) after the first vertex, see section 6), which cannot
follow excursions of the formu f V f u. In other words,
only paths belonging to

can have a positive probability under this model. Given this
new random walk model, the function (4) is still a valid
kernel, but the implementation described in section 3.3 cannot
be used directly anymore.

5.2. Computation of the New Kernel.While paths have
been previously defined as the succession of vertices they
are made of, one can see a path as a starting vertex followed
by a succession of connected edges. In such a definition, a
pair of connected edges provides information about a triplet
of vertices of the path: the starting vertex of the first edge,
the vertex that connects them, and the ending vertex of the
second edge. A second-order information about the succes-
sion of vertices therefore resumes to a first-order one based
on the succession of edges. This suggests it should be
possible to deal with second-order “vertex-based” random
walks models by means of a first-order ones involving edges
of the graphs.

Based on this consideration, we now derive an explicit
way to perform the computation of the kernel (4) under the
model (7). To do so, we introduce a graph transformation
such that the second-order random walk (7) in the original
graphs factorizes as a first-order Markov process (6) in the
transformed ones.

Figure 5. Morgan index process.

Figure 6. Illustration of the process of prevention of the tottering
paths on a toy example. Pathsh1 andh2 are both labeled as C-C-
C, but pathh2 corresponds to a tottering path.

p(V1 ... Vn) ) ps(V1)pt(V2|V1)∏
i)3

n

pt(Vi|Vi-2, Vi-1) (7)

{ps(V) ) p0(V)pq
(0)(V),

pt(u|V) )
1 - pq

(0)(V)

pq
(0)(V)

pa(u| V)pq(u),

pt(u| w, V) )
1 - pq(V)

pq(V)
pa(u| w, V)pq(u)

H0(G) ) {h ) V1 ... Vn : Vi * Vi+2, i ) 1, ... ,n - 2} (8)
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More precisely, for a graphG ) (V, E), let the transformed
graphG′ ) (V′, E′) be defined by

and

The vertices of the transformed graphG′ can therefore
correspond either to edges or vertices of the original graph
G. Among all pathsH(G′) on G′, let us consider the subset
of paths that start on an arbitrary vertex inV, that is the set

Note that from the definition of the transformed graph edges,
it is easy to check that any pathh′ ) V′1 ... V′n ∈ H(G′)
starting with a vertexV′1 ∈ V must be made of edges:
V′i ∈ E, i ) 2, ... ,n. This construction is illustrated in Figure
7.

We define the labeling functionl′ of the transformed graph
G′ as follows:

- for a nodeV′ ∈ V′ the label is eitherl′(V′) ) l(V′) if V′
∈ V or l′(V′) ) l(V) if V′ ) (u, V) ∈ E.

- for an edgee′ ) (V′1, V′2) between two verticesV′1 ∈ V
∪ E andV′2 ∈ E, the label is simply given byl′(e′) ) l(V′2).

This labeling is also illustrated in Figure 7.
Let us consider the mapf: H0(G) f (V′)* defined by

with

This definition gives rise to the following proposition,
whose proof can be found in the Appendix.

Proposition 1. f is a bijection between H0(G) and H1(G′)
and for any path h∈ H0(G) we haVe l(h) ) l′(f (h)).

Finally, let the functionalp′: (V′)* f R be derived from
(7) by

with

and

Note that only paths belonging toH1(G′) have a positive
value underp′.

Based on the definitions off and p′, we can state the
following result, whose proof is postponed in the Appendix.

Theorem 1.Under the bijection f: H0(G) f H1(G′) defined
in (11), for any path h∈ H0(G) we haVe p(h) ) p′(f (h)).

We have defined a graph transformation showing a one
to one correspondence between a particular subset of the
paths of the transformed graph (the setH1(G′)) and the set
of nontottering paths of the original graph (the setH0(G)).
Moreover we introduced a first-order Markov functional (12)
on the transformed graph, positive only on this particular
subset of pathsH1(G′), that corresponds to the second-order
probability distribution (7) that was previously defined on
the original graph to prevent totters. We can therefore
immediately deduce the following.

Corollary 1. For any two graphs G1 and G2, the kernel
(4) can be expressed in terms of the transformed graphs G1′
and G2′ by

This shows that computing theK(G1, G2) under the second-
order Markov model (7) for the random walk is equivalent
to computing a kernel between the transformed graphsG′1
andG′2 under a first-order Markov random walk (12). This
can therefore be carried out using the computation scheme
described in section 3.3, at the expense of an increased
complexity.

More precisely, consider a graphG ) (V, E), whose
maximum node degree isd, and the graphG′ ) (V′, E′)
resulting from its transformation. By definition ofV′, |V′| )
|V| + |E|. Moreover, from the two steps appearing in the
definition of E′, we also have|E′| e |E| + (d - 1)|E| )
d|E|. Finally, it is easy to check that the node of maximum
degree in the transformed graph is precisely the node of
maximum degree in the original graph. This is due to the
fact that the nodes ofG′ corresponding to nodes ofG have
the same degree that their homologues and that the nodes in
G′ corresponding to edges ofG have a degree equal to those
of the nodes being reached by the edges inG minus one (to
prevent tottering). From section 3.3, the complexity of the
kernel between two graphsG1 ) (V1, E1) andG2 ) (V2, E2)
writes asO(|E1||E2|∑i)1

N-1min((d1d2)i,|V1||V2|)). As a result,
if we now consider the graphsG′1 ) (V′1, E′1) andG′2 ) (V′2,
E′2) obtained by transformingG1 andG2, this complexity is
of orderO(d1d2|E1||E2|∑i)1

N-1min((d1d2)i,(|V1| + |E1|)(|V2| +
|E2|))).

Figure 7. The graph transformation. (I) The original molecule.
(II) The corresponding graphG ) (V, E). (III) The transformed
graph. (IV) The labels on the transformed graph. Note that different
widths stand for different edges labels, and gray nodes are the nodes
belonging toV.

K(G1, G2) ) ∑
(h′1,h′2)∈(V′1)*×(V′2)*

p′1(h′1)p′2(h′2)KL(l′(h′1), l′(h′2))

V' ) V ∪ E

E′ ) {(V,(V, t))|V ∈ V,(V, t) ∈ E} ∪
{((u, V),(V, t))|(u, V),(V, t) ∈ E, u * t} (9)

H1(G′) ) {h′ ) V′1 ... V′n ∈ H(G′) : V′1 ∈ V} (10)

f (V1 ... Vn) ) V′1 ... V′n

{V′1 ) V1 ∈ V,
V′i ) (Vi-1, Vi) ∈ E, for i ) 2, ... ,n (11)

p′(V′1 ... V′n) ) p′s(V′1)∏
i)2

n

p′t(V′i|V′i-1) (12)

p′s(V′) ) {ps(V′) if V′∈V,
0 if V′∈E

p′t(V′|u′) ) {pt(V| u′) if u′∈V
andV′ ) (u′, V)∈E,

pt(V| t, u) if u′ ) (t, u)∈E
andV′ ) (u, V)∈E
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6. EXPERIMENTS

In our experiments, we adopted the parametrization
proposed in ref 2. A single parameterpq is used to define
the first-order random walk model as follows, for anyu, V
∈ V:

This way, the emission probability distribution is chosen
to be uniform over the set of edges, a constant ending
probability is introduced for every node of the graph, and
transition probabilities are made uniform over the set of
neighbors of the nodes. When we do not have prior
knowledge about the data, this seems to be a natural way to
parametrize the model.

To filter tottering paths, we adapt this model to define in
a similar way the second-order random walk model (7)
introduced in section 5.1. The main differences between the
two models concern the functionalpq(V), pq

(0)(V), andpa(u|w,
V). Indeed, in the first step of the random walk process, the
walk is not subject to tottering, and we can consider the same
first-order transition functionalpa(u|V) and ending prob-
abilities pq

(0)(V). In the following steps however, we may
have to set the ending probabilitypq(V) to one, to explicitly
kill random walks when reaching a node with only one
neighbor, because in this case, the only possibility to continue
the walk is to “totter” to the previous node. The definition
of pa(u|w, V) also reflects the modification required to prevent
totters: the number of possible edges to follow from a node
V is only d(V) - 1, because one edge has already been used
to reachV.

This leads to the following second-order Markov model,
for any u, V, w ∈ V:

The classification experiments described below were
carried out with a support vector machine based on the
different kernel tested. Each kernel was implemented in
C++, and we used the free and publicly available GIST
(http://microarray.cpmc.columbia.edu/gist) software to per-
form SVM classification. No optimization of the parameters
required by GIST was carried out. The only option specified
was the-radial option, which converts the kernel into a radial
basis function, a standard way to normalize the data. Two
data sets of chemical compounds were used. Both gather

results of mutagenicity assays, and while the first one17 is a
standard benchmark for evaluating chemical compounds
classification, the second one1 was introduced more recently.

Generally speaking, focusing only on the global accuracy
is hazardous to analyze classification results and may lead
to wrong conclusions. This is particularly true when the data
set isunbalanced, which means that one of the classes is
overrepresented compared to the other. A safer approach is
to describe the classifier usingROCanalysis18 and consider
the sensitiVity/specificityrates. Sensitivity is defined as the
ratio between the correctly classified positive data (thetrue
positiVes) and the total number of positive data (the sum of
true positiVe and false negatiVe data). It therefore accounts
for the proportion of positive data that will be retrieved by
the algorithm. Similarly, specificity accounts for the propor-
tion of negative data that the algorithm will correctly find
(the ratio betweentrue negatiVedata and the whole negative
data, i.e., thetrue negatiVe plus thefalse positiVe). Clearly,
a good classifier will show a high sensitivity together with
a good specificity.

Moreover, the SVM algorithm actually computes a score
to make the predictions. If this score is positive, the
prediction is +1, otherwise it is-1. This fact makes it
possible to draw the evolution of the true positive rate versus
the false positive rate in a curve denoted as theROC curVe.
A good indicator can be derived from this curve: theAUC,
Area Under the (ROC) Curve. The AUC of an ideal classifier
would be 1 (the positive data would be the first to be
recognized as positive according to their scores), while for
a random classifier it would be 0.5.

6.1. First Data Set.This data set contains 230 chemical
compounds (aromatic and hetero-aromatic nitro compounds)
tested for mutagenicity onSalmonella typhimurium. A SAR
analysis on this data set was first conducted by ref 17, which
identified two subsets of the data: 188 compounds consid-
ered to be amenable to regression and 42 compounds that
could not easily be fitted by regression. In this study we
mainly focus on the first set of 188 compounds. These
compounds can be split into two classes: 125 positive
examples with high mutagenic activity (positive levels of
log mutagenicity) and 63 negative examples with no or low
mutagenic activity. Each chemical compound is represented
as a graph with atoms as vertices and covalent bonds as
edges. This subset of 188 compounds was already used in
the original paper ref 2, and in a similar way, kernels are
evaluated here by their leave-one-out error. AUC will be
our quality criterion.

Table 1 shows the results we can get with the kernel as it
is formulated in ref 2. They will be our reference results to
evaluate the impact of the proposed extensions. This table
shows a consistent increase in the AUC when the parameter
pq decreases, that is to say when the kernel favors long paths.

Figure 8 shows the effect of removing the tottering paths
with the original kernel formulation for distinct values of
pq. The curve reveals that the relationship between smallpq

and high AUC observed with the original formulation of the
kernel does not rigorously hold any longer when tottering
paths are filtered. Indeed, we can find in this case an optimum
value ofpq around 0.1. Above this value, we can notice on
one hand a small but consistent increase on classification
when tottering paths are removed, and on the other hand
that the effect of this extension becomes smaller whenpq

p0(V) ) 1/|V|
pq(V) ) pq < 1

pa(V|u) ) {1/d(u) if (u, V) ∈ E
0 otherwise

p0(V) ) 1/|V|

pa(u|V) ) {1/d(V) if (V, u) ∈ E
0 otherwise

pa(u| w, V) ) {1/(d(u) - 1) if (V, u) ∈ E andu * w
0 otherwise

pq
(0)(V) ) pq

pq(V) ) {1 if d(V) ) 1
pq otherwise
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increases. This is probably due to the fact that whenpq

increases, the paths taken into account by the kernel tend to
become shorter and are therefore less likely to totter. When
pq e 0.1, the AUC decreases and becomes smaller than the
one obtained with the original formulation forpq ) 0.001.

Table 2 shows the AUC results for distinct values ofpq

combined with the introduction of Morgan indices. It reveals
that the introduction of Morgan indices can always increase
the classification results, and interestingly, the optimal index
to be used depends on the value ofpq: it is generally smaller
for little values ofpq. This reflects the fact that we have to
add more specificity in the atoms labels for largepq, since
only paths involving a few atoms will be taken into account.
However, no prior rule can define a precise relation between
the Morgan index and the parameterpq.

Table 3 shows the AUC results when tottering paths have
been filtered. The classification results show the same
behavior of the kernel with respect topq and the Morgan
indices when the tottering paths have been filtered. The

values obtained are actually sensibly equal, which suggests
that filtering the tottering paths provides little additional
information. We can however notice that performances are
globally reduced whenpq becomes smaller. Tottering be-
tween atoms made specific to the molecule therefore accounts
for graphs similarity when long paths are taken into account.

Finally, results about computation times are presented in
Figure 9. The top curve plots the evolution of the time needed
to compute the kernels when different Morgan indices were
introduced. More precisely it plots the ratio between the time
needed for a given iteration of the Morgan process and the
time initially required. Note that they-axis is in log-scale,
so that we can notice a drastic decrease in the computational
cost. For example, at the third iteration of the process,
computation time is reduced by a factor around 40 when
tottering paths have not been filtered. Remember that when
Morgan indices are introduced, atoms are made more specific
to the molecule they belong, and as a consequence fewer
atoms are apariated in the product graph, which makes the

Table 1. Classification of the First Data Set, with the Original
Formulation of the Kernel Function for Different Values of the
Parameterpq

pq accuracy sensitivity specificity AUC

0.01 89.4 88.8 90.4 94.4
0.05 89.4 88.8 90.4 94.2
0.1 89.9 89.6 90.4 94.0
0.2 90.4 90.4 90.4 93.8
0.3 90.4 90.4 90.4 93.6
0.4 88.8 88.0 90.4 93.4
0.5 88.8 88.0 90.4 93.0
0.6 88.3 87.2 90.4 92.7
0.7 87.2 85.6 90.4 92.2
0.8 86.7 84.8 90.4 91.2
0.9 83.5 82.4 85.7 89.2

Figure 8. AUC for distinct values ofpq, with and without filtering
the tottering paths, first data set.

Table 2. AUC for the 10 First Morgan Indices and Different
Ending Probabilities, First Data Set

pq 0.01 0.05 0.1 0.3 0.5 0.7 0.9

MI ) 0 94.4 94.2 94.0 93.6 93.0 92.2 89.2
MI ) 1 94.4 94.2 93.8 93.2 92.7 92.2 92.0
MI ) 2 96.1 96.0 95.9 95.2 94.3 93.6 93.1
MI ) 3 94.6 94.7 94.7 94.9 94.8 94.8 94.6
MI ) 4 93.3 93.3 93.2 93.3 93.1 93.0 92.6
MI ) 5 92.3 92.4 92.5 92.8 93.2 93.4 93.5
MI ) 6 91.6 91.8 92.0 92.6 92.8 92.9 92.8
MI ) 7 90.2 90.1 90.1 90.1 90.1 90.1 90.2
MI ) 8 86.9 87.1 87.3 87.7 88.1 88.3 88.4
MI ) 9 80.5 80.8 81.5 81.6 81.7 81.9 81.7
MI ) 10 72.8 72.8 73.7 76.2 77.1 77.6 77.9

Table 3. AUC for the 10 First Morgan Indices and Different
Ending Probabilities, When Tottering Paths Have Been Filtered,
First Data Set

pq 0.01 0.05 0.1 0.3 0.5 0.7 0.9

MI ) 0 94.3 94.3 94.6 94.0 93.1 92.4 89.3
MI ) 1 94.0 95.1 94.2 94.0 93.2 92.3 92.0
MI ) 2 94.9 94.9 95.2 95.4 94.5 93.6 93.1
MI ) 3 93.3 93.4 93.6 94.7 94.8 94.8 94.6
MI ) 4 92.5 92.4 92.7 93.3 93.2 92.9 92.6
MI ) 5 90.5 90.7 91.0 92.6 93.1 93.4 93.4
MI ) 6 88.2 88.5 89.9 92.1 92.8 92.9 92.8
MI ) 7 84.7 86.4 88.5 90.2 90.1 90.2 90.2
MI ) 8 69.2 73.9 81.4 87.4 88.0 88.2 88.3
MI ) 9 57.1 60.6 70.7 81.3 81.8 81.7 81.7
MI ) 10 49.2 48.8 52.7 73.8 76.8 78.2 78.3

Figure 9. Top: Time needed to compute the kernel for the 10 first
iterations of the Morgan process. Bottom: Ratio between computa-
tion times with or without filtering the totters for the 10 first
iterations of the Morgan Process, first data set.
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matrix inversion cheaper. This effect is even stronger when
filtering the totters. The bottom curve presents the impact
of totter removal on the computation times. The curve shows
the ratio between the computation times of the original
formulation and the totters filtering. This ratio becomes
smaller with the Morgan process, but while the computation
without totters was initially more than a hundred time longer
than with totters, it remains at least 10 times longer with
high Morgan indices.

As a comparison, Table 4 gathers 10-fold cross-validated
accuracy results already obtained for the classification of this
set of 188 compounds. These methods can be split in three
categories: those relying on global molecular properties
(Lin.Reg, NN, DT) [For instance, the molecular hydrophobic-
ity (logP), the energy of the lowest unoccupied molecular
orbital (LUMO), and two additional binary descriptors coding
for the presence of particular features in the molecule.], those
considering the structure of the molecules as a set of atoms
and connecting bonds (Progol1), and those involving the two
representations (Progol2, Sebag, Kramer). The best 10-fold
cross-validated accuracy corresponding to our previous
experiments is 91.2%. As we can notice from Table 4, this
result is better than those based on one of the two molecular
representations, but it is below those obtained by methods
that combine both representations. This table reveals that
there is a significant gap between theProgol1andProgol2
results, which are obtained using the same algorithm when
the global descriptors are considered or not as an additional
source of information. This suggests that the information
contained in the two descriptions may be complementary.
Moreover, the best result reported (ref 20) deals with the
structure of the molecule via a fragment-based characteriza-
tion, which, as we already mentioned, shows some similari-
ties with the graph kernel approach. It seems therefore
reasonable to draw the hypothesis that the results of the graph
kernel approach may be improved if such a combination of
information about the molecules is used.

Little work has been carried out on the 42 compounds
that constitute the “nonregression friendly part” of the data
set. To our knowledge, the only results were published in
ref 19 and are summarized in Table 5. The fundamental
difference with the “friendly part” of the data set lies in the
fact that here the best result was obtained using only the 2D

structure of the compounds (with theProgol1method). Using
our graph kernels, we can reach 88.1% of the correct clas-
sification using a similar leave-one-out procedure. Outperform-
ing all the results from Table 5, this result shows that the
graph kernel approach is indeed efficient when the relevant
information is to be sought in the structure of the molecules.

Independently of our work, related graph kernels for
chemoinformatics applications were recently introduced.22

Their formulation is driven by the usual molecular finger-
printing process, and several kernel functions are proposed
based on variations of the Tanimoto coefficient. Different
ways of fingerprinting the molecules are considered, and, in
particular, some experiments compare standard hashed
fingerprints (such asDaylight fingerprints) with exhaustive
fingerprints, for paths up to a given length (which was set
to 10). In exhaustive fingerprints, a dimension is introduced
for every possible path, which is closely linked to the
description of molecules related to the graph kernels
introduced here. Although the performances of these different
configurations are similar, this study tends to reveal that the
hashing process leads to a decrease in the classification
accuracy. More precisely, the best result for exhaustive
fingerprints reaches 87.8% of correct leave-one-out clas-
sification, while it is 87.2% when the fingerprints are hashed.
Using our graph kernels, we can reach a leave-one-out
accuracy of 91%, which indicates that the marginalized graph
kernels approach may compare favorably to classical hashed-
fingerprints. Note however that results in ref 22 were not
obtained using SVM but using the Voted Perceptron
algorithm, an algorithm known to provide comparable results,
and that further refinements of their kernels lead to an optimal
accuracy of 91.5%.

6.2. Second Data Set.The second database considered
was recently introduced in ref 1. It consists of 684 com-
pounds classified as mutagens or nonmutagens according to
a test known as theSalmonella/microsome assay. The classes
are well balanced with 341 mutagens compounds for 343
nonmutagens ones.

Although the biological property to be predicted is the
same as the one of the previous section, the two data sets
are fundamentally different. While ref 17 focused on a
particular family of molecules (aromatic and heteroaromatic
nitro compounds), this data set involves a set of very diverse
chemical compounds, qualified asnoncongenericin the
original paper. To predict mutagenicity, the model therefore
needs to solve different tasks: in the first case it has to detect
subtle differences between homogeneous structures, while
in the second case it must seek for regular patterns within a
set of structurally different molecules. As stated in ref 1,
toxicity is a very complex and multifactor mechanism, so
that diverse data sets need to be considered in order to be
able to predict mutagenicity in real-world applications.
Finally, note that this data set is public, and a further
description can be found in ref 1.

We applied different graph kernels to this data set in order
to compare our approach to the results presented in ref 1.
Several machine learning algorithms have been used in that
paper (namely SVM, decision trees, and rule learning), based
on a molecular-fragment characterization of molecules. In
their method, a set of substructures occurring frequently in
mutagenic compounds but seldomly in nonmutagens ones
is defined, and molecules are represented by bit-strings

Table 4: Accuracy Results Obtained for the 10-Fold
Cross-Validation of the Mutag Data Seta

Lin.Reg DT NN Progol1 Progol2 Sebag Kramer
graph

kernels

89.3% 88.3% 89.4% 81.4% 87.8% 93.3% 95.7% 91.2%

a Lin.Reg(linear regression),DT (decision tree),NN (neural network),
andProgol1/2 (inductive logic programming): ref 19;Sebag: ref 21;
Kramer: ref 20.

Table 5: Accuracy Results Obtained for the Leave-One-Out
Classification of the “Unfriendly Part” of the Mutag Data Seta

Lin.Reg Lin.Reg+ DT NN Progol1 Progol2
graph

kernels

66.7% 71.8% 83.3% 69.0% 85.7% 83.3% 88.1%

a Lin.Reg (Linear Regression),DT (Decision Tree),NN (Neural
Network), andProgol1/2 (Inductive Logic Programming): ref 19.
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indicating the presence or absence of these substructures.
Tables 6 and 7 gather results on this data set using the
original and totters-filtering versions of the kernel, for several
values ofpq and different iterations of the Morgan process.
Following ref 1, we performed classifications by a 10-fold
cross-validation procedure, and performances are evaluated
according to theaccuracy, sensitiVity, andspecificityvalues
of the models.

A quick inspection of these two tables reveals that,
similarly to the original paper, the test sensitivity and
specificity rates are always similar. This means that the

different models obtained can be used to predict either
mutagenicity or nonmutagenicity, with a similar degree of
confidence. From this consideration, we base our analysis
of the results on the global test accuracy of the models.

Several conclusions can be drawn from these tables. First,
when no Morgan indices are introduced (i.e.MI ) 0), we
can note from both tables that test accuracy systematically
increases when the parameterpq decreases. This is consistent
with the experiments carried out with the previous data set
and suggests that it is worth considering long paths.
Moreover, when we compare the two tables, we note that
filtering the totters systematically enhances the classification,
which comforts the intuition that this kind of paths adds noise
to the description of the molecules.

Concerning the introduction of the Morgan indices, we
can note from the two tables that, for any value ofpq

considered, classification is improved for the first iteration
of the process, after what it systematically decreases. This
means that although the first step of the Morgan process
could improve the expressive power of the kernel, the
information introduced into the description of the molecule
becomes too specific from the second iteration. Interestingly,
we can also notice that for a given index of the Morgan
process, the optimal value ofpq is not the smallest one any
longer.

Filtering the totters after the introduction of the Morgan
indices have a somehow ambiguous effect. It does not show
a consistent trend with respect to the parameterpq. However,
the two optimal results show a 79.32% and 79.06% test
accuracy, so that results are globally similar.

Finally, note that the computation times needed to compute
the different kernels follow the same behavior as the results
presented in the previous subsection.

Reference 1 pointed out the need to consider structurally
diverse data sets such as this one in order to be able to model
multifactor mechanisms such as toxicity. Although the
classification accuracy provides a general measure of the
effectiveness of the algorithm, it is of limited help to quantify
its ability to handle the diversity of the data set. For instance,
a situation where the subset of correctly classified data shows
a smaller diversity compared to the global data set actually
makes sense. This situation means that the algorithm is only
efficient in a particular subspace of the chemical space
defined by the whole data set, which is actually likely to
occur, and reveals that the method fails to handle the diversity
of the data set. Analyzing the diversity of the classification
results is therefore useful to give fair conclusions about the
method. Table 8 shows the values of a diversity criterion

Table 6. Classification Results for the Second Mutagenicity Data
Set, with the Tottering Paths

MI pq

training
accuracy

test
accuracy

test
sensitivity

test
specificity

0 0.1 94.47 76.02 73.34 78.67
0.2 93.85 75.14 72.65 77.77
0.3 92.65 74.20 71.14 77.26
0.4 92.06 73.36 70.76 75.90
0.5 92.77 73.32 71.61 75.03

1 0.1 96.03 79.01 77.06 80.97
0.2 96.00 79.32 77.55 81.08
0.3 96.08 78.70 77.65 79.73
0.4 96.11 78.40 76.45 80.30
0.5 96.01 77.17 76.00 78.20

2 0.1 97.20 78.09 76.95 79.25
0.2 97.13 77.89 77.33 78.47
0.3 97.02 78.70 78.43 78.93
0.4 96.91 78.34 78.11 78.56
0.5 96.82 78.20 77.71 78.70

3 0.1 97.42 75.32 73.62 76.95
0.2 97.14 75.00 73.31 76.67
0.3 96.92 75.88 74.55 77.21
0.4 96.71 75.00 74.04 76.12
0.5 96.57 75.27 73.81 76.69

4 0.1 98.03 71.45 68.53 74.41
0.2 97.55 71.80 69.47 74.20
0.3 97.29 72.10 69.77 74.50
0.4 97.10 71.52 69.79 73.21
0.5 96.87 72.18 69.86 74.53

5 0.1 97.65 66.76 64.32 69.30
0.2 97.24 67.73 65.56 69.80
0.3 96.94 66.99 64.65 69.27
0.4 96.58 66.85 65.11 68.72
0.5 96.38 66.73 64.62 68.86

Table 7. Classification Results for the Second Mutagenicity Data
Set, When Tottering Paths Were Removed

MI pq

training
accuracy

test
accuracy

test
sensitivity

test
specificity

0 0.1 95.60 77.37 76.59 78.15
0.2 95.11 75.46 72.38 78.63
0.3 94.48 74.93 71.95 77.82
0.4 93.65 75.13 71.81 78.44
0.5 93.22 74.18 71.58 76.77

1 0.1 97.22 77.87 74.90 80.90
0.2 96.43 78.89 76.65 81.16
0.3 96.21 79.06 77.28 81.00
0.4 96.20 78.54 77.25 79.84
0.5 96.22 78.47 76.65 80.03

2 0.1 97.72 76.59 72.03 81.21
0.2 97.52 77.95 75.35 80.47
0.3 97.20 78.04 77.01 79.08
0.4 97.04 78.28 77.77 78.80
0.5 96.90 78.03 77.54 78.53

3 0.1 97.97 75.18 69.82 80.54
0.2 97.79 75.87 72.99 78.69
0.3 97.53 75.48 74.36 76.63
0.4 97.06 75.54 73.98 77.10
0.5 96.78 75.62 75.22 76.00

Table 8. Diversity Values for Different Subsets of the Data,
Computed from the Kernels Obtained Using the Tottering Paths, the
First Iteration of the Morgan Process, and Two Different Values of
pq

a

All Pos. Neg. Correct
Correct
& Pos.

Correct
& Neg.

pq ) 0.1 0.862 0.849 0.864 0.854 0.826 0.860
pq ) 0.2 0.868 0.856 0.870 0.860 0.834 0.864

a All: whole data set;Pos.: positive compounds;Neg.: negative
compounds;Correct: correctly classified compounds;Correct & Pos.:
correctly classifed positive compounds;Correct & Neg.: correctly
classified negative compounds.
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measured on the whole data set and on several subsets: the
subsets of positive compounds, negative compounds, cor-
rectly classified compounds, positive compounds that were
correctly classified, and negative compounds that were
correctly classified. These values were computed for two
kernels that correspond to optimal results in the previous
tables: those obtained using the tottering paths, the first
iteration of the Morgan process, and values ofpq of 0.1 and
0.2. [The kernels used actually correspond to the kernels used
for the classification, i.e., the kernels obtained after applying
the -radial option of the GIST software to the original
kernels.]

To evaluate the diversity of a subset, we use the average
distance of the points of this subset to their center of mass,
in the feature-space associated with the kernel. Recall from
section 2 that a kernel function corresponds to a dot-product
between the data mapped to a vector spaceF (the so-called
feature-space): k(x1, x2) ) 〈φ(x1),φ(x2)〉. A distance in the
feature-space is therefore implicitly defined by the kernel
function: dF (x1, x2) ) ||φ(x1) - φ(x2)||2 ) k(x1, x1) + k(x2,
x2) - 2k(x1, x2). Our diversity criterion, for the subsetS (of
cardinality nS), therefore writes asD(S) ) 1/nS∑i∈SdF (xi,
M), where M is the center of mass ofS, i.e., M )
1/nS∑i∈Sφ(xi), which leads toD(S) ) 1/nS∑i∈Sk(xi, xi) -
1/nS

2∑i,j∈Sk(xi, xj).
Table 8 reveals that the diversities of these different subsets

are very similar. Two main conclusions can be drawn from
this observation. First, the fact that the diversity of the whole
data set equals that of the positive and negative subsets
reveals that the supports of these subsets largely overlap and
indicates that the classification problem is not trivial. Indeed,
in a particularly simple configuration the diversities of the
positive and negative subsets would be significantly smaller
than that of the data set as a whole: the two classes of
compounds would be clearly separated in the chemical space.
Second, the fact that all these values are similar shows that
this algorithm is able to correctly classify data regardless of
the class they belong to nor their location in the chemical
space. This accounts for the fact that the method is indeed
able to handle noncongeneric data sets.

Finally, we can note that Tables 6 and 7 compare quite
favorably to the results presented in ref 1. Many configura-
tions have been tested in ref 1, and the best model reported
has an accuracy of 78.5%. With an optimal accuracy of 76%,
the original graph kernel with SVM shows a slightly smaller
performance, but the extensions introduced here could raise
this figure up to more than 79%. Based on our pair of
extensions, we have therefore been able to propose models
with state-of-the-art performance and even models perform-
ing slightly better. We can however note a slight difference
between the two family of models: models from ref 1 tend
to have a higher sensitivity, while ours show a better
specificity. This means that the models from ref 1 will
correctly classify a larger fraction of the positive data, but
this comes at the expense of a larger false positive rate,
whereas our models may miss sensibly more true positive
data, but the confidence in positive predictions is higher.

7. CONCLUSION

Based on a recently introduced family of graph kernels,
we validated in this paper the graph kernel approach for SAR
analysis. Experiments revealed in a consistent way that

optimal results are obtained when long paths are considered,
and this insight is worth solving the problem of model
parametrization.

We introduced two extensions to the general formulation
and showed they can actually improve the SAR models in
terms of accuracy of the predictions and/or computation
times. These two extensions are formulated as preprocessing
steps of the algorithm and are therefore completely modular.
Moreover, they are based on general graph considerations,
and we believe they can be useful in other problems.

The fundamental difference between this approach and
other SAR algorithms lies in the fact that the step of feature
selection inherent to all other methods is avoided here. In
this sense, these kernels provide a kind of universal way to
compare molecules. Together with the panel of kernel
methods algorithms, this family of graph kernels could be
used straightaway to solve different SAR problems, such as
clustering or regression tasks for instance, which otherwise
typically involve multiple feature selection tasks.

On top of that, since it deals with every molecular fragment
of the molecules, this model can benefit from structural
patterns responsible for activity that have not been discovered
yet and are therefore not included in the set of traditional
descriptors. This property however comes at the expense of
the interpretability of the model, which has a great interest
in medicinal chemistry. Indeed, an interpretable model can
give clues to explain the causes of activity or nonactivity
and therefore provide chemists with worthy feedback to carry
out molecular optimization in a rational way. The next
challenge to these graph kernels for chemoinformatics is to
be able to extract information from the infinite dimensional
feature-space associated with the kernels and to formalize it
in terms of chemical knowledge.
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8. APPENDIX

1. Proof of Proposition 1.For any pathh ) V1 ... Vn ∈
H0(G), let f (h) ) V′1 ... V′n defined by (11). By definition (9),
(V′1, V′2) ) (V1,(V1, V2)) ∈ E′, and (V′i, V′i+1) ) ((Vi-1, Vi),(Vi,
Vi+1)) ∈ E′ becauseVi+1 * Vi-1 for i > 1. Hencef (h) is a
path inG′. MoreoverV′1 ∈ V andV′i ∈ E by (11), hencef(h)
∈ H1(G′) by (10).

Conversely, for anyh′ ) V′1 ... V′n ∈ H1(G′), we haveV′1 )
V1 ∈ V and by easy induction using the definition of edges
(9), V′i ) (Vi-1, Vi) ∈ E with Vi-1 * Vi+1. Henceh′ ) f (h)
with h ) V1 ... Vn ∈ H0(G), thereforef is surjective. By
definition of f (11), it is also clear thatf (h) ) f (h′) w h )
h′. f is therefore a bijection fromH0(G) onto H1(G′).

Moreover, by definition of the labelingl′ onG′, we obtain
for any h ) V1, ..., Vn ∈ H0(G):

l′(f (h)) ) l′(V1,(V1, V2), ... ,(Vn-1, Vn))

) l(V1)l(V2) ... l(Vn)

) l(h)

950 J. Chem. Inf. Model., Vol. 45, No. 4, 2005 MAHÉ ET AL.



2. Proof of Theorem 1.From the definition ofp′, for any
h ) V1, ..., Vn ∈ H0(G), we obtain:

Note Added after ASAP Publication. This paper was
released ASAP on May 27, 2005.V′1 ∈ E should beV′i ∈ E
in the sentence following equation 10. The correct version
was posted on June 6, 2005.
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p′(f (h)) ) p′(V1,(V1, V2), ..., (Vn-1, Vn))

) p′s(V1)p′t ((V1, V2)|V1)

∏
i)3

n

p′t ((Vi-1, Vi)|(Vi-2, Vi-1))

) ps(V1)pt (V2|V1)∏
i)3

n

pt (Vi|Vi-2, Vi-1)

) p(h)
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