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Abstract. The Bayes rule is the optimal classification rule if the underlying distribution of the data is known. In
practice we do not know the underlying distribution, and need to “learn” classification rules from the data. One way
to derive classification rules in practice is to implement the Bayes rule approximately by estimating an appropriate
classification function. Traditional statistical methods use estimated log odds ratio as the classification function.
Support vector machines (SVMs) are one type of large margin classifier, and the relationship between SVMs and
the Bayes rule was not clear. In this paper, it is shown that the asymptotic target of SVMs are some interesting
classification functions that are directly related to the Bayes rule. The rate of convergence of the solutions of SVMs
to their corresponding target functions is explicitly established in the case of SVMs with quadratic or higher order
loss functions and spline kernels. Simulations are given to illustrate the relation between SVMs and the Bayes
rule in other cases. This helps understand the success of SVMs in many classification studies, and makes it easier
to compare SVMs and traditional statistical methods.
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1. Introduction

Support vector machines (SVMs) have proved highly successful in a number of classification
studies. In the classification problems, we are given a training data set of n subjects, and
for each subject i , i = 1, 2, . . . , n in the training data set, we observe an explanatory vector
xi ∈ Rd , and a label yi indicating one of several given classes to which the subject belongs.
The observations in the training set are assumed to be iid from an unknown probability
distribution P(x, y), or equivalently, they are independent random realizations of the random
pair (X, Y ) that has cumulative probability distribution P(x, y). The task of classification
is to derive from the training set a good classification rule, so that once we are given the
x value of a new subject, we can assign a class label to the subject. One possible criterion
for judging the quality of a classification rule is the expected misclassification rate, but in
practice it is also possible that some other loss function is more appropriate. If we knew the
underlying probability distribution P(x, y), we could derive the optimal classification rule
with respect to any given loss function. This optimal rule is usually called the Bayes rule
for classification.
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In the following we will concentrate on the case where there are only two classes, and
where the expected misclassification rate is used as the criterion. This is the case in which
SVMs are best developed. In this situation the label y is either 1 or −1. A classification rule
is a mapping from Rd to {−1, 1}. It is easy to see that the expected misclassification rate R
of any classification rule η : Rd → {−1, 1} can be written as

R = E[|Y − η(X)|/2] = E[1 − Yη(X)]+/2. (1)

Here (·)+ is a function such that τ+ is τ , if τ > 0; and is 0, otherwise. This function is not
really needed in (1), since [1−Yη(X)] will be nonnegative for any classification rule η. For
a general real function f : Rd → R, we call E[1 − Y f (X)]+ the generalized comparative
Kullback Leibler (GCKL) measure. See Wahba et al. (2000).

Let

p(x) = Pr{Y = 1 | X = x}
Then the (Bayes) rule that minimizes the expected misclassification rate is η∗(x) =
sign[p(x) − 1/2], or equivalently, sign[g(x)], where g(x) is the log odds ratio log[p(x)/

(1 − p(x))].
Since we do not know P(x, y) in practice, but are only given a sample from it, we can

not obtain this Bayes rule exactly. So the question is often how to find a classification rule
whose performance is close to that of the Bayes rule, or how to approximate the Bayes
rule. Traditional statistical methods try to estimate [p(x)− 1/2] (or the log odds ratio g(x))
from the training data, and then approximate the Bayes rule with sign[ p̂(x) − 1/2] (or
sign[ĝ(x)]). Here p̂(x) and ĝ(x) are the estimates of p(x) and g(x), respectively. Friedman
(1997) discussed how the bias and variance components of the estimation error affects
classification error when the estimate is used in a classification rule.

The support vector machine methodology was introduced in Boser et al. (1992). See also
Cortes and Vapnik (1995) and Vapnik (1995). Support vector machines have proved highly
successful in a number of classification studies. The linear SVMs are motivated by the geo-
metric interpretation of maximizing the margin, and the nonlinear SVMs are characterized
by the use of reproducing kernels. (The reproducing kernel is sometimes called kernel in the
SVM literature, not to be confused with the kernel estimators in the nonparametric statistics
literature). For a tutorial on SVMs for classification, see Burges (1998). Here we give a
brief summary of support vector machines for classification, starting from the simple linear
support vector machines and moving on to the nonlinear support vector machines.

We start with the simplest case: linear support vector machine trained on separable data.
Suppose the two classes of points in the training set can be separated by a linear hyperplane
(x · w) + b = 0, where w is the normal to the hyperplane. Let d+ and d− be the shortest
distance from the separating hyperplane to the closest positive and negative examples,
respectively. Define the margin of the separating hyperplane to be (d+ +d−). It is natural to
look for the separating hyperplane with the largest margin. This amounts to the hard margin
linear support vector machine: Find w ∈ Rd , b ∈ R, to minimize ‖w‖2, subject to

(xi · w) + b ≥ +1 for yi = +1; (2)

(xi · w) + b ≤ −1 for yi = −1; (3)
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Once such w and b are found, we classify according to the sign of [(w · x) + b].
When the points in the training data set are not linearly separable, constraints (2) and (3)

can not be satisfied simultaneously. We can introduce nonnegative slack variables ξ ’s to
overcome this difficulty, and this results in the soft margin linear support vector machine:
Find w ∈ Rd , b ∈ R, and ξi , i = 1, 2, . . . , n, to minimize (1/n)(

∑n
i=1 ξi )

q + λ‖w‖2, under
the constraints

(xi · w) + b ≥ +1 − ξi for yi = +1; (4)

(xi · w) + b ≤ −1 + ξi for yi = −1; (5)

ξi ≥ 0, ∀i.

Here λ is a parameter to be chosen by the user, and q is a positive integer. This is a convex
programming problem for any positive integer q; for q = 2 and q = 1, it is also a quadratic
programming problem. The choice q = 1 has the further advantage that the Wolfe dual
problem has a particularly simple form, and this is the most common choice.

The nonlinear support vector machine maps the input variable into a high dimensional
(often infinite dimensional) feature space, and applies the linear support vector machine in
the feature space. Computationally, this can be achieved by the application of a (reproducing)
kernel. A reproducing kernel over Rd is a positive definite function on Rd ⊗ Rd . For an
introduction to reproducing kernels and reproducing kernel Hilbert spaces, see Wahba
(1990). Let HK be the reproducing kernel Hilbert space with reproducing kernel K (s, t),
s, t ∈ Rd . It has been shown (Wahba, 1999; Evgeniou et al., 1999), that the SVM with kernel
K is equivalent to a regularization problem in HK . The SVM with reproducing kernel K
first minimizes

1

n

n∑
i=1

[(1 − yi fi )+]q + λ‖h‖2
HK

(6)

over all the functions of the form f (x) = h(x)+ const, and h ∈ HK . Here fi = f (xi ). Once
the minimizer f̃ is found, then the SVM classification rule is sign[ f̃ (x)]. A variety of repro-
ducing kernels have been used successfully in practical applications, including polynomial
kernels, Gaussian kernels, and spline kernels (Sobolev Hilbert space kernels). The repro-
ducing kernel Hilbert spaces for the latter two types of reproducing kernels are of infinite
dimension. For a review on spline kernels, see Wahba (1990). The theory of reproducing
kernel Hilbert spaces ensures that the minimizer of (6) lies in a finite dimensional space,
even when the minimization is carried out in an infinite dimensional reproducing kernel
Hilbert space. For any positive integer q, the minimization problem (6) becomes a convex
programming problem in a n-dimensional space. See Wahba et al. (2000). For q = 1 and
q = 2 it is also a quadratic programming problem.

Remark 1.1. If {1} ⊂ HK , the regularization problem (6) is equivalent to minimizing

1

n

n∑
i=1

[(1 − yi fi )+]q + λ‖Pf ‖2
HK

over HK , where Pf is the projection of f into the orthogonal complement of {1} in HK .
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Several authors have studied the generalization performance of SVMs, See Vapnik (1995),
and Shawe-Taylor and Cristianini (1998). These authors established bounds on generaliza-
tion error based on VC dimension, fat shattering dimension, and the proportion of the
training data achieving certain margin. However, SVMs often have very large, even infi-
nite, VC dimension or fat shattering dimension. Hence the bounds established are often very
loose, and do not provide a satisfactory explanation as to why SVMs often have good gener-
alization performance. In this paper, we show that SVMs have some interesting asymptotic
target functions. Classifying according to the sign of these target functions is equivalent to
the Bayes rule. The rate of convergence of the solutions of SVMs to their corresponding
target functions is explicitly established in the case of SVMs with quadratic or higher order
loss functions and spline kernels. Simulations are given to illustrate the relation between
SVMs and the Bayes rule in other cases. This helps explain why SVMs have been success-
ful in practical applications, and facilitates the comparison of SVMs with other traditional
statistical methods for classification.

We will also consider the regularization problem of minimizing

1

n

n∑
i=1

|yi − fi |q + λ‖h‖2
HK

(7)

over all the functions of the form f (x) = h(x) + const, and h ∈ HK . With q = 2, this is
the penalized least square estimation; with q = 1 this is the penalized least absolute value
estimation. As we will see later, this problem is closely related to the problem of minimizing
(6).

Regularization problems similar to (6) and (7) have long been studied in statistics litera-
ture, see Wahba (1990) and the reference therein. Examples include penalized least square
regression, penalized logistic regression, penalized density estimation, and regularization
procedures used in more general nonlinear inverse problems. Cox and O’Sullivan (1990)
provided a general framework for studying regularization methods. As in (6) and (7), the
method of regularization has two components: a data fit functional component and a regu-
larization penalty component. The data fit functional component dictates that the estimate
should follow the pattern in the data, whereas the regularization penalty component imposes
smoothness conditions. The data fit component usually approaches a limiting functional as
n → ∞. In general the limiting functional can be used to identify the target function: the
target function is the minimizer of the limiting functional. Under the assumption that the
target function is in the reproducing kernel Hilbert space under consideration and certain
other general regularity conditions, the solution of the regularization problem approaches
the target function as n → ∞. We give the following simple example for illustration.

Example 1.1. Nonparametric regression. Let (zi , wi), i = 1, 2, . . . , n, be an independent
random sample of (Z , W). Here Z is a random variable and W is a random vector. Assume
E(Z | W) = f0(W). The task is to estimate f0. The data fit component of penalized least
square method is

1

n

n∑
i=1

[zi − f (wi )]
2.
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The limiting functional of this is

E[Z − f (W)]2,

which is minimized by f0.

For more examples in density estimation, hazard regression, and logistic regression, see
Cox and O’Sullivan (1990).

Before we proceed further, let us introduce a simple fact:

Lemma 1.1. For any a ∈ [−1, 1], and y ∈ {−1, 1}, we have [(1 − ya)+]q = |y − a|q .

Proof: For any a ∈ [−1, 1], and y ∈ {−1, 1}, we have

|y − a|q = |y(1 − ya)|q = |1 − ya|q = [(1 − ya)+]q
✷

In the following we first study the cases in which q > 1, especially the case when q = 2;
then we consider the case q = 1.

2. SVMs with q > 1

In the SVM situation, the limiting functional of the data fit component in (6) is easily seen
to be E[(1 − Yf (X))+]q . The corresponding limiting functional for (7) is E |Y − f (X)|q .
The following lemma identifies the target function for SVM and (7) with q > 1 (From now
on all proofs are given in the appendix):

Lemma 2.1. For any q > 1, the minimizers of E[(1 − Yf (X))+]q and E |Y − f (X)|q are
the same function given by

fq(x) = [
(p(x))

1
q−1 − (1 − p(x))

1
q−1

]/[
(p(x))

1
q−1 + (1 − p(x))

1
q−1

]
Also, sign[ fq(x)] = sign[p(x) − 1/2] for all q > 1, and the classification rule sign[ fq(x)]
is equivalent to the Bayes rule.

Thus the asymptotic target of the SVM is fq , and classifying according to the sign of fq

is equivalent to the Bayes rule. To be specific, let us now specialize to the case q = 2. In
this case fq simplifies to 2p − 1. We will consider a special yet very general reproducing
kernel Hilbert space, and illustrate how fast the solution of (6) approaches fq .

For a nonnegative integer m, the Sobolev Hilbert space with order m of univariate func-
tions on domain [0, 1], denoted by H m([0, 1]), is defined by

H m([0, 1]) = {
f
∣∣ f (ν) abs. cont., ν = 0, 1, . . . , m − 1; f (m) ∈ L2

}
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with a norm equivalent to

‖ f ‖2
H m ([0,1]) =

m−1∑
ν=0

(Mν f )2 +
∫ 1

0

(
f (m)(u)

)2
du

where Mν f = ∫ 1
0 f (ν)(u) du, ν = 0, 1, . . . , m−1. The superscript on f refers to a derivative.

It is typical in statistics to impose the mth order smoothness condition on a univariate
function by assuming it is in H m([0, 1]). For any positive integer m, the Sobolev Hilbert
space H m([0, 1]) is a reproducing kernel Hilbert space. The reproducing kernel of this space
is derived in Wahba (1990), chapter 10, and is known as the spline kernel. For example,
when m = 2, the reproducing kernel is

r(s, t) = 1 + k1(s)k1(t) + k2(s)k2(t) − k4(|s − t |),

where k1(·) = · − 0.5, k2 = (k2
1 − 1/12)/2, and k4 = (k4

1 − k2
1/2 + 7/240)/24.

Let ⊗d H m be the tensor product space of d H m([0, 1]) spaces. Then ⊗d H m is a Hilbert
space of functions on [0, 1]d , and it can be identified with the Hilbert space of functions

m =
{

f :
∂‖α‖1 f (x)

∂xα
∈ L2([0, 1]d), ∀α such that ‖α‖∞ ≤ m

}

where α = (α1, α2, . . . , αd), αi ≥ 0, αi = integer, and ‖α‖1 ≡ ∑d
i=1 αi , ‖α‖∞ ≡ max{α1,

α2, . . . , αd}. See Lin (1998). The space ⊗d H m is also a reproducing kernel Hilbert space,
and the reproducing kernel of this space is

R(s, t) =
d∏

j=1

r(s j , t j )

where s = (s1, . . . , sd), t = (t1, . . . , td).
Recall that p(x) = Pr{Y = 1 | X = x}. Let the marginal density of X be denoted by fX.

Without loss of generality, assume that X takes values only in the unit cube [0, 1]d . Also
assume that the marginal density of X is bounded away from 0 and ∞ in the unit cube, i.e.,
0 < C1 ≤ fX(x) ≤ C2 < ∞ for some constants C1 and C2.

Now consider the regularization problems (6) and (7) with HK = ⊗d H m and q = 2. We
denote the solution to (6) by f∗, and the solution to (7) by f ∗.

Theorem 2.1. Assume that p(x) is in ⊗d H m, then if λ → 0, and n−1λ−( 3
2m +ε) → 0 for

some ε > 0. Then

∫
[0,1]d

[ f ∗ − (2p − 1)]2 = O(λ) + Op

[
n−1λ− 1

2m

(
log

1

λ

)d−1]
.

sup
x∈[0,1]d

| f ∗ − (2p − 1)| = O
(
λ

1
2 − 1

4m − ε
4
) + Op

[
n− 1

2 λ−( 1
2m + ε

4 )

(
log

1

λ

)d−1]
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Theorem 2.2. Assume that p(x) is in ⊗d H m, and 0 < p(x) < 1, ∀x ∈ [0, 1]d . Then if
λ → 0, and n−1λ−( 3

2m +ε) → 0 for some ε > 0. Then∫
[0,1]d

[ f∗ − (2p − 1)]2 = Op

[
λ + n−1λ− 1

2m

(
log

1

λ

)d−1
]
.

sup
x∈[0,1]d

| f∗ − (2p − 1)| = Op

[
λ

1
2 − 1

4m − ε
4 + n− 1

2 λ−( 1
2m + ε

4 )

(
log

1

λ

)d−1
]

Remark 2.1. In the two theorems above, the smoothing parameter λ changes with n. It is
actually a sequence λ(n). How to choose the smoothing parameter is an important practical
problem, and several methods have been proposed in the literature. For example, Wahba
et al. (2000) considered choosing λ to minimize the estimated generalized comparative
Kullback Leibler measure.

Remark 2.2. The condition 0 < p(x) < 1 in Theorem 2.2 is technical, and we believe the
result should still be valid without this condition.

Remark 2.3. We believe the results stated for the sup norm is not the best possible. There
should be room for deriving sharper bounds.

Remark 2.4. In some situations we may want to use some reproducing kernel Hilbert
space other than the one considered above. For example, we may want to use the Gaussian
kernel. Results similar to those stated in the theorems above should also be obtainable, given
that p(x) is in the assumed reproducing kernel Hilbert space. The bounds would usually
be different, though. The order of the bounds typically depends on the rate of decay of the
eigenvalues of the reproducing kernel. See Cox and O’Sullivan (1990).

Remark 2.5. For q > 2, similar results can be obtained on how fast the minimizers of (6)
and (7) approach fq by using the framework provided in Cox and O’Sullivan (1990).

The theorems above show that SVMs with q = 2 and the spline kernel solve a regular-
ization problem to get f∗, which approaches 2p − 1 asymptotically, then uses the sign of
f∗(x) to approximately implement the Bayes rule sign[p(x) − 1/2]. Similarly, we can also
consider solving (7) to approximate 2p − 1.

Compared with the traditional statistical method of estimating the log odds ratio and
using the sign of the estimate to approximate the Bayes rule, SVM enjoys two advantages.
First, the computation load of SVM is not so heavy as that of the methods of estimating log
odds ratio. Second, when p(x) is (or is close to) 0 or 1, the log odds ratio is (or is close to)
−∞ or ∞, and the method of estimating log odds ratio is ineffective and computationally
unstable. SVM is more suitable for this situation.

The method of minimizing (7) with q = 2 can be motivated by the fact that E(Y | X =
x) = 2p(x) − 1, and we recognize (7) with q = 2 as the penalized least square regression
method for estimating E(Y | X = x). Intuitively, this method would not be efficient since
they do not take into account the fact that Var(Y | X = x) = 4p(x)[1 − p(x)] is not a
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constant and is smaller at places where p(x) is close to 0 or 1. By proceeding as if the
variance is a constant, we are wasting some precision at regions where p(x) is close to 0
or 1. However, for the purpose of classification, what concerns us most is the region where
p(x) is not too far away from 1/2, and the efficiency lost there for estimation is small.

One of the conditions of the theorems is that the reproducing kernel Hilbert space used in
the regularization problem contains p(x). It conforms to the notion that we should choose
reproducing kernel so that p(x) is in the corresponding reproducing kernel Hilbert space.
This condition can be relaxed a little, (see Cox and O’Sullivan (1990)) but p(x) should at
least be close to the reproducing kernel Hilbert space.

3. SVMs with q = 1

This is the most commonly used SVM. In this situation, the limiting functional of the data
fit component in (6) is E[(1 − Y f (X))+]. The corresponding limiting functional for (7) is
E |Y − f (X)|. The following lemma identifies the target function for SVM and (7) with
q = 1.

Lemma 3.1. The minimizer of E[(1 − Y f (X))+] and E |Y − f (X)| are both sign(p−1/2).

Thus instead of targeting at (p − 1/2), and then using the sign of the estimate to approx-
imate the Bayes rule, SVM with q = 1 takes aim directly at sign(p − 1/2). However, this
target function typically does not lie in the commonly used reproducing kernel Hilbert space,
(it is easy to see that sign(p−1/2) is not a smooth function unless p(x) is always larger than
1/2 or always smaller than 1/2.) though it can be approximated arbitrarily closely in the L2

norm by the functions in the reproducing kernel Hilbert spaces such as the tensor product
Sobolev Hilbert space and the one induced by the Gaussian kernel. Since we are solving the
regularization problem in the assumed reproducing kernel Hilbert space, we encounter the
Gibbs phenomenon. That is, the solution may behave erratically at the discontinuous point.
This in general is not a serious problem for classification, since we are mainly concerned
with the location of the classification boundary [consisting of the discontinuous points of
sign(p − 1/2)].

We can recognize (7) with q = 1 as the least absolute value method used in robust
regression. In least absolute value regression, the target function is the median med(Y | X =
x), and we can see in our case med(Y | X = x) = sign[p(x) − 1/2].

The computational complexity of SVM with q = 1 is less than those of SVM with q >

1 and the traditional nonparametric logistic regression. See Kaufman (1999). It remains
effective when p(x) is close or equal to 0 or 1. One special property of SVM with q = 1 is
that it magnifies the contrast between the two sides of the classification boundary: on one
side, the value of the classification function is close to 1; on the other side, it is close to −1.
This is different from the SVM with q = 2, for which the value of fq is very close on the
two sides of the boundary.

It is much harder to derive theoretic results similar to Theorems 2.1 and 2.2 for SVMs
with q = 1. One reason is that (1 − y f )+ is not differentiable. The other reason is that
the target function sign(p − 1/2) is not in the assumed reproducing kernel Hilbert space.
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Figure 1. The underlying conditional probability function p(x) = P{Y = 1 | X = x} in our simulation. The
function sign[p(x) − 1/2] is 1, for 0.25 < x < 0.75; −1, otherwise.

Here we will use a simple simulation to illustrate how, with appropriately chosen tuning
parameter λ, SVM with q = 1 approaches the target function sign(p − 1/2).

For easy visualization, we will conduct the simulation in one dimension. We take n
equidistant points on the interval [0, 1]. That is, xi = i/(n − 1), i = 0, 1, . . . , n − 1. Let
p(x) = Pr(Y = 1 | X = x) = 1 − |1 − 2x |, and randomly generate yi to be 1 or −1 with
probability p(xi ) and 1 − p(xi ). The picture of p(x) is given in figure 1. It is easy to see
that sign[p(x) − 1/2] = 1, x ∈ (0.25, 0.75); −1, otherwise.

We will first consider the reproducing kernel Hilbert space H m([0, 1]). The minimizer
of (6) with q = 1 is known to have the form

f (·) =
n∑

i=1

ci K (·, xi ) + b

where K is the reproducing kernel of H m
0 ([0, 1]):

K (s, t) = k1(s)k1(t) + k2(s)k2(t) − k4(|s − t |),

where k1(·) = · − 0.5, k2 = (k2
1 − 1/12)/2, and k4 = (k4

1 − k2
1/2 + 7/240)/24.

Letting e = (1, . . . , 1)′, y = (y1, y2, . . . , yn)
′, c = (c1, c2, . . . , cn)

′, and with some
abuse of notation, letting f = ( f (x1), f (x2), . . . , f (xn))

′ and K now be the n × n matrix
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with i j th entry K (xi , x j ), we have

f = Kc + eb

and the regularization problem (6) becomes: find (c, b) to minimize

1

n

n∑
i=1

(1 − yi fi )+ + λc′Kc.

We solve the above problem by considering its dual problem. Let Y be the n ×n diagonal
matrix with yi in the iith position, and let H = 1

2nλ
YKY . The dual problem has the form

max L = −1

2
α′ Hα + e′α

subject to 0 ≤ αi ≤ 1, i = 1, 2, . . . , n, and y′α = 0. Here α = (α1, α2, . . . , αn)
′. Once we

get the α’s, we get c’s by c = 1
2nλ

Yα, and b can be computed robustly by

b = [e′ A(I − A)(y − Kc)]/[α′(e − α)].

as long as there exists an i for which 0 < αi < 1. Here A is the n × n diagonal matrix with
αi in the iith position.

The choice of the smoothing parameter λ is important. Wahba et al. (2000) proposed
finding that value of λ so that the solution fλ of (6) minimizes GCKL E[(1 − Y fλ(X))+].
By Lemma 3.1, using the λ that minimizes GCKL of fλ in a sense reassures that the chosen
fλ is close to sign(p −1/2). Also, heuristically, for such λ that fλ is close to sign(p −1/2),
we can see from (1) that GCKL of fλ is close to two times the expected misclassification rate
of fλ, therefore the λ that minimizes the GCKL of fλ should be close to a local minimum
point of the expected misclassification rate, though this local minimum may not be the
global minimum.

An approximant of the GCKL for fλ is

1

n

n∑
i=1

[p(xi )(1 − fλ(xi ))+ + (1 − p(xi ))(1 + fλ(xi ))+]. (8)

In our simulation here, we can calculate GCKL or (8) directly for any fλ, since we know
what p(x) is. In reality, we do not know the true p(x), hence we can not calculate (8)
directly, but we can always estimate (8) with a test data set.

We run the simulation for n = 33, 65, 129, 257. In each case the smoothing parameter λ

is chosen so that GCKL for fλ is minimized. The result is shown in figure 2.
To illustrate how the smoothing parameter influences the solution, we give the solutions to

(6) in the case n = 257 with smoothing parameters λ such that nλ = 2− j , j = 1, 2, . . . , 25.
The results are shown in figures 3 and 4. We can see in figure 3 that the minimizer of GCKL
coincides with a local minimum point of the expected misclassification rate. This local
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Figure 2. The solutions to the SVM regularization problems with q = 1 and the Sobolev Hilbert space kernel for
samples of size 33, 65, 129, 257. The tuning parameter λ is chosen to minimize GCKL in each case.

minimum of the expected misclassification rate is not the global minimum, but the value
of the local minimum is close to the value of the global minimum. It is often the case in
our simulations that the expected misclassification rate fluctuates much more than GCKL.
This is easy to understand since the expected misclassification rate depends only on the the
points where the estimate crosses the x-axis, which is usually just a few points, whereas
GCKL depends on almost the whole function estimate. We see in figure 4 the solution to
the SVM regularization problem with q = 1 is close to sign[p(x) − 1/2] when GCKL in
figure 3 is close to the minimum.

The same simulation is run with Gaussian kernel:

K (s, t) = exp

[
− (s − t)2

2σ 2

]
.

For Gaussian kernel, there is an additional tuning parameter σ . We use GCKL to find
a good choice of λ and σ jointly. The minimum of GCKL is searched on a mesh of
(log2(nλ), σ ). The relevant results are shown in figures 5–8. Figure 5 shows, in the cases
when the sample size is n = 33, 65, 129, 257, the solutions to the regularization problem
when (log2(nλ), σ ) are chosen to minimize GCKL. Figures 6–8 are for the case n = 257.
For this sample the minimum of GCKL is found at log2(nλ) = −9 and σ = 0.09. Again
we see the solution to the SVM regularization problem is close to sign[p(x) − 1/2] when
(log2(nλ), σ ) are close to the minimizer of GCKL.
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Figure 3. GCKL (solid line) and two times misclassification rate (dashed line) of fλ with varying λ for a fixed
sample with n = 257, where fλ is the solution to the SVM regularization problem with q = 1 and the Sobolev
Hilbert space kernel. Notice the x-axis is − log2(nλ). (Larger values of λ correspond to the points on the left.)

4. Conclusion

We studied the relation between SVMs and the Bayes rule of classification. Lemmas 2.1 and
3.1 hold for any kernel, and they identify the asymptotic target of SVMs. It is shown that
classifying with the sign of these target functions is equivalent to the Bayes rule. The question
of how well SVMs approach their corresponding asymptotic targets is studied for SVMs
with quadratic loss (or higher order loss) and spline kernels. Theorem 2.2 gives the rate of
convergence of such SVMs approaching their corresponding target functions. Intuitively,
the theory of regularization methods and Lemmas 2.1 and 3.1 suggests that SVMs with
q = 1, and SVMs with other kernels, should also approach their target functions. However,
results similar to Theorem 2.2 can be very hard to obtain for SVMs with q = 1. We used
some simulations to demonstrate how SVMs with q = 1 approaches the Bayes rule. The
simulation is based on a very simple problem, and only provide some illustration. Further
study is definitely needed. Lin (2000b) derived some theoretical results for SVMs with
q = 1 and the first order spline kernel.

The insight we obtain from the relation between SVMs and the Bayes rule has practical
importance. For example, in practice it is often the case that the costs of false positive
and false negative are different. It is also possible that the fraction of members of the
classes in the training set is different than those in the general population (sampling bias).
In such situations the Bayes rule that minimizes the expected misclassification cost can be
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Figure 4. For the same sample as in figure 3, the solutions to the SVM regularization problem with q = 1 and the
Sobolev Hilbert space kernel for nλ = 2−1, 2−2, . . . , 2−25. The first row corresponds to nλ = 2−1, 2−2, . . . , 2−5,
from left to right. The second row corresponds to nλ = 2−6, 2−7, . . . , 2−10; the third row corresponds to nλ =
2−11, 2−12, . . . , 2−15; and so on. We see the solution is close to sign[p(x) − 1/2] when GCKL in figure 3 is close
to the minimum.

expressed as sign[p(x) − c], where c ∈ (0, 1) is not equal to 1/2. Hence we need to modify
the formulation of SVMs accordingly for them to perform optimally in this situation. Lin
et al. (2002) contains some extension of the SVM to such nonstandard situations.

Appendix

Proof of Lemma 2.1: Notice

E[(1 − Y f (X))+]q = E{E{[(1 − Y f (X))+]q | X}}

We can minimize E[(1 − Y f (X))+]q by minimizing E{[(1 − Y f (X))+]q | X = x} for
every fixed x.

For any fixed x, we have E{[(1 − Y f (X))+]q | X = x} = p(x)[(1 − f (x))+]q + (1 −
p(x))[(1 + f (x))+]q . Let us search for w̄ that minimizes A(w) = p(x)[(1 − w)+]q + (1 −
p(x))[(1 + w)+]q .

First notice that the minimizer of A(w) must be in [−1, 1]. For any w outside [−1, 1],
let w′ = sign(w), then w′ is in [−1, 1] and it is easy to check A(w′) < A(w). So we can
restrict our search in [−1, 1].
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Figure 5. The solutions to the SVM regularization problems with q = 1 and the Gaussian kernel for samples of
size 33, 65, 129, 257. The tuning parameter λ and σ are chosen to minimize GCKL in each case.

Figure 6. GCKL of fσ,λ with varying σ and λ for a fixed sample with n = 257, where fσ,λ is the solution to the
SVM regularization problem with q = 1 and the Gaussian kernel exp[− (s−t)2

2σ 2 ]. Upper left: GCKL of fσ,λ with σ

fixed at 0.09. Notice the x-axis is −log2(nλ). Lower right: GCKL of fσ,λ with nλ fixed at 2−9.

For w ∈ [−1, 1], A(w) = p(x)(1 − w)q + [1 − p(x)](1 + w)q . By taking derivative

with respect to w, we get w̄ = [(p(x))
1

q−1 − (1 − p(x))
1

q−1 ]/[(p(x))
1

q−1 + (1 − p(x))
1

q−1 ].
Therefore the minimizer of E[(1 − Y f (X))+]q is

fq(x) = [
(p(x))

1
q−1 − (1 − p(x))

1
q−1

]/[
(p(x))

1
q−1 + (1 − p(x))

1
q−1

]
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Figure 7. For the same sample as in figure 6, with σ fixed at 0.09, the solutions to the SVM regularization problem
with q = 1 and Gaussian kernel for nλ = 25, 24, . . . , 2−14. The first row corresponds to nλ = 25, 24, 23, 22; the
second row corresponds to nλ = 21, 20, 2−1, 2−2; and so on. We see the solution is close to sign[p(x) − 1/2]
when GCKL in figure 6 (upper left picture) is close to the minimum.

The same line of argument shows that fq(x) is also the minimizer of E |Y − f (X)|q .
The proof of the rest of Lemma 2.1 is straight forward. ✷

Proof of Lemma 3.1: Follow the same line of proof as that of Lemma 2.1. ✷

Proof of Theorem 2.1: Consider the problem of estimating f0 with iid sample from the
model

E(Y | X) = f0(X), Var(Y | X) = σ 2.

Lin (2000a) studied the properties of the estimator obtained by minimizing (7) with q = 2.
In our present model we have

E(Y | X) = 2p(X) − 1, Var(Y | X) = 4p(X)(1 − p(X)) ≤ 1.

Using the same argument as that employed in the proof of Theorem 4.1 in Lin (2000a)
with l∞( f ) = E[Y − f (X)]2, which is E[( f (X) − (2p(X) − 1))2 + 4p(X)(1 − p(X))]
in our situation instead of E[( f (X) − ( f0(X)))2] + σ 2 as in Lin (2000a), everything goes
through exactly as in the proof of Theorem 4.1 in Lin (2000a) with f∗ in place of f̂ , 2p−1 in
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Figure 8. For the same sample as in figure 6, with nλ fixed at 2−9, the solutions to the SVM regularization problem
with q = 1 and Gaussian kernel for σ = 0.03, 0.06, . . . , 0.27. The first row corresponds to σ = 0.03, 0.06, 0.09;
the second row corresponds to σ = 0.12, 0.15, 0.18; and so on. We see the solution is close to sign[p(x) − 1/2]
when GCKL in figure 6 (lower right picture) is close to the minimum.

place of f0, and fX in place of p in Lin (2000a). So we get that Theorem 4.1 in Lin (2000a)
is still valid in our situation. The norm ‖ · ‖a is the norm in the space ⊗d H ma([0, 1]). (If
ma is not an integer, then H ma([0, 1]) is a fractional order Sobolev space.)

Now set b = 1
2m + ε

2 in Theorem 4.1 of Lin (2000a). Setting a = 0 we get the first expres-
sion in our theorem. Setting a = b, using Theorem 4.1 and Lemma 2.1 in Lin (2000a), we
get the second expression in our theorem. ✷

Proof of Theorem 2.2: Since 0 < p(x) < 1, ∀x ∈ [0, 1]d , and p(x) is continuous, we
have that supx∈[0,1]d |2p − 1| < 1. Also, by Theorem 2.1, under our condition, we have
supx∈[0,1]d | f ∗ − (2p − 1)| = op(1). Hence we can take n large enough so that the event
supx ∈ [0,1]d | f ∗| < 1 occurs with probability arbitrarily close to one. For the remainder of
the proof we restrict attention to this event.

Consider the set  = { f ∈ ⊗d H m : supx∈[0,1]d | f (x)| < 1}. By Lemma 2.1 of Lin
(2000a), we see that

sup
x∈[0,1]d

| f (x)| ≤ C‖ f ‖⊗d H m

for any f ∈ ⊗d H m . Here C is a constant independent of f . Hence it is easy to check that 

is an open set in ⊗d H m . We have f ∗ ∈ . Since f ∗ is the minimizer of (7), by Lemma 1.1,
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we have that f ∗ is also the minimizer of (6) over . Hence f ∗ is a local minimum point of
(6). Since (6) is a convex functional of f , f ∗ is also a global minimum point of (6). Hence
f∗ = f ∗, and the results now follows from Theorem 2.1. ✷
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