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1. Introduction

Since the human genome project started about 10
years ago, a wealth of information about the
sequences of individual genes has been revealed.
There has been great progress in the construction of
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Summary Objective: Pathological changes in an organ or tissue may be reflected in
proteomic patterns in serum. It is possible that unique serum proteomic patterns could
be used to discriminate cancer samples from non-cancer ones. Due to the complexity of
proteomic profiling, a higher order analysis such as data mining is needed to uncover
the differences in complex proteomic patterns. The objectives of this paper are (1) to
briefly review the application of data mining techniques in proteomics for cancer
detection/diagnosis; (2) to explore a novel analytic method with different feature
selection methods; (3) to compare the results obtained on different datasets and that
reported by Petricoin et al. in terms of detection performance and selected proteomic
patterns. Methods and material: Three serum SELDI MS data sets were used in this
research to identify serum proteomic patterns that distinguish the serum of ovarian
cancer cases from non-cancer controls. A support vector machine-based method is
applied in this study, in which statistical testing and genetic algorithm-based methods
are used for feature selection respectively. Leave-one-out cross validation with
receiver operating characteristic (ROC) curve is used for evaluation and comparison
of cancer detection performance. Results and conclusions: The results showed that (1)
data mining techniques can be successfully applied to ovarian cancer detection with a
reasonably high performance; (2) the classification using features selected by the
genetic algorithm consistently outperformed those selected by statistical testing in
terms of accuracy and robustness; (3) the discriminatory features (proteomic patterns)
can be very different from one selection method to another. In other words, the
pattern selection and its classification efficiency are highly classifier dependent.
Therefore, when using data mining techniques, the discrimination of cancer from
normal does not depend solely upon the identity and origination of cancer-related
proteins.
� 2004 Elsevier B.V. All rights reserved.
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physical and genetic maps of the normal human
genome and in the identification of genes asso-
ciated with human diseases [1]. With the near
completion of the genome project, the focus of
research is now moving to the task of identifying
the structure, function, and interactions of the
proteins produced by individual genes and their
roles in specific disease processes. This shift is
driven by research indicating that (1) the level
of mRNA expression frequently does not represent
the amount of active protein in a cell; (2) the gene
sequence does not describe post-translational
modifications of proteins, which may be essential
for protein function and activity; (3) the study of
the genome does not describe dynamic cellular
processes [1]. A key area in the post-genome era
is proteomics, the global analysis of cellular pro-
teins [2]. The proteome has been defined as the
complete set of proteins encoded by the genome.
Recently, the term has been broadened to include
the set of proteins expressed both in space and
time. Proteomics originally was defined as the
analysis of the entire protein component of a cell
or tissue, and now encompasses the study of
expressed proteins, including identification and
elucidation of the structure-function relationship
under healthy and disease conditions, such as
cancer [3]. The application of proteomics can be
expected to have a major impact by providing an
integrated view of individual disease processes at
the protein level [2].

1.1. Proteomics for cancer research

Recent improvements in the technology of protein
analysis, and in particular the development of
advanced bioinformatic databases and analysis
software, have allowed the development of proteo-
mics. Proteomics uses a combination of sophisti-
cated laboratory techniques including two-
dimensional gel electrophoresis, image analysis,
mass spectrometry (MS), amino acid sequencing,
and bioinformatics to quantify and characterize
proteins. In particular, proteomics provides the
possibility of identifying disease-associated protein
markers to assist in diagnosis or prognosis and

to select potential targets for specific drug therapy
[2].

There are currently two major approaches in
applying proteomics to identify new biomarkers
for cancer research. The first one, a bottom-up
approach, is mostly from the perspective of mole-
cular biology. Efforts are focused on identifying
and characterizing a specific biomarker/protein
at the molecular level, investigating the relation-
ship between the structure/function of the
biomarkers and their roles in cancer development.
With such understanding, methods and medicines
are sought to diagnose/treat/prevent cancer.
There have been some studies reported along this
theme [4—9]. Unfortunately, progress in assess-
ment of the clinical utility of these biomarkers has
been slow, in part due to a lack of emphasis on
translational research studies to fully explore the
biological and clinical implications of their poten-
tial as diagnostic or prognostic biomarkers.
Assessment of individual biomarkers has often
met with disappointing results, as shown in
Table 1. Few studies have simultaneously evalu-
ated more than one candidate biomarker to
enhance the ‘‘test’s’’ diagnostic/prognostic sen-
sitivity and specificity. Such studies have led
to the belief that no single marker is likely to
prove sufficiently predictive, therefore emphasiz-
ing the need for the development of panels of
multiple diagnostic/prognostic markers [10,11].
The latter is thought to be necessary to address
the robust heterogeneity demonstrated by most
human cancers.

The second approach, a top—down one, is
from the perspective of bioinformatics. In this
approach, proteomic spectra of certain biomar-
kers, related to certain diseases like cancers, are
generated by MS. Matrix-assisted laser desorption
and ionization (MALDI) and surface-enhanced laser
desorption and ionization (SELDI) are the two most
frequently used techniques for collecting proteo-
mics mass spectra. MALDI spectra contain proteins
and fragments of the proteins generated from
laser ablation. SELDI MS is a refinement of MALDI.
Its underlying principle is surface enhanced affi-
nity capture through the use of protein chips

Table 1 Single biomarker for cancer detection

Cancer type Biomarker Disadvantage References

Prostate cancer Prostate specific
antigen (PSA)

Only 25—30% specificity; PSA production influenced by
many factors

[10]

Ovarian cancer Cancer antigen
125 (CA125)

PPV of less than 10—20% coupled with ultrasound [37]

Breast cancer CA15.3 Lack the adequate sensitivity (23%) and specificity (69%) [28]
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consisting of chemical or biological surfaces
that bind proteins. Both of these methods can
profile a population of proteins in a sample accord-
ing to the molecular weight and net electrical
charge (m/z) of the individual proteins [12,13].
Analysis of large numbers of proteins sampled from
different populations (normal, patients, various
stages of cancer, etc.), generate profiles of mass
spectra. These profiles can contain thousands of
data points, and may reflect the pathological state
of organs and aid in the early detection of the
disease. To uncover differences in complex mass
spectral patterns of proteins, higher order analysis
is required. Efforts have been made to link mass
spectral analysis with a high-order analytical
approaches, such as data mining, using samples
of known diagnosis to define an optimal discrimi-
natory proteomic pattern, then to use this pattern
to predict the identity of masked samples. The
goal is to extract a proteomic pattern that is both
sensitive and specific to a disease with high repro-
ducibility. An advantage with this top—down
approach is that it is not necessary to purify,
identify, and develop antibodies to individual pro-
teins to proceed to clinical assay development.
Even though it will eventually be important to
know the identity of the proteins to understand
their functional role and to assess their potential
as novel therapeutic targets, the top—down pro-
teomic approach by mass spectroscopy coupled
with heuristic pattern recognition/data mining
algorithms may become superior to immunoassays
as clinical analyte sensors for early detection of
cancer/disease.

1.2. Data mining techniques applied to
proteomics for cancer research

Cancer detection based on the application of data
mining techniques to proteomic data has received a
lot of attention in recent years [3,10,14—20]. The
proteomic data are predominantly mass spectra of
patients’ tissue cells, blood, serum, or other body
fluids generated by mass spectrometry, although in
principle other forms of data could also be analyzed
in a similar manner. A mass spectrum contains
information about proteins and their fragments
[12,13,21]. The mass spectrum data present a curve
with peaks and valleys, where the x-coordinate is
the ratio of molecular weight to the net electrical
charge for a specific organic molecule, with Dalton
as unit, and the y-axis is the intensity (quantity) of
signal for the same molecule.

Development and application of data mining
algorithms to these proteomic data is an essential
part in determining the clinical potential of a pro-
tein biomarker. Up to the present, several types of
cancers have been studied with this approach,
including ovarian, breast, prostate, liver, and colon
cancer. Table 2 lists some of the research reported
in recent years including the cancer type, features
used, the learning algorithms and detection/diag-
nosis performance. The data mining techniques
applied in these studies can be summarized as
follows. Due to the fact that these studies were
taken on different types of cancers with different
data sets, it is inappropriate to make a direct
comparison between these methods. Instead, it is
a summary of research status.

Table 2 Proteomic research for cancer detection using mass spectrum

Cancer type Feature Learning algorithms Sensitivity
(%)

Specificity
(%)

References

Prostate cancer Peak Decision tree 83 97 [11]
Prostate cancer Peak Boosted decision tree 100a 100a [22]
Astroglial tumor Peak Neural network (Neuroshell 2) [23]
Liver cancer SAM (significance

analysis of
microarrays)
identified points

Neural network (EasyNN) 92 90 [18]

Ovarian cancer Genetic algorithm
selected points

Self-organizing clustering
analysis

100 95 [16]

Breast cancer Peak Unified maximum separability
analysis

93 91 [28]

Prostate cancer Peak Logistic regression analysis 93 94 [30]
Prostate cancer Peak Manual analysis 100 100 [25]
Prostate cancer Peak Manual analysis 100 100 [26]
Breast cancer Peak Manual analysis 100 96 [26]
Colon Cancer Peak Manual analysis 100 86 [26]
Breast cancer Peak Manual analysis 75—84 91—100 [27]

a (AdaBoost) 97 (Boosted decision stump feature selection).
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1.2.1. Decision trees
Adam et al. [11] applied decision-tree learning to
mass spectra of prostate cancer patients. They used
Ciphergen SELDI(r) software for peak detection, and
decision trees for classification using the intensity
levels of the nine highest discriminatory peaks as
features. This technique gave 96% accuracy, 83%
sensitivity and 97% specificity. They also explored
several bioinformatics models, including purely
biostatistical algorithms, genetic cluster algo-
rithms, support vector machines and decision clas-
sification trees, which gave accuracies between 83
and 90%.

Qu et al. [22] reported a boosted decision tree
method for analyzing mass spectra to diagnose
prostate cancer using the data of Adam et al.
[11]. Their feature selection method was similar
to that of [11]. Two new classifiers were developed,
i.e. the AdaBoost classifier and the Boosted Decision
Stump Feature Selection classifier. For the Ada-
Boost classifier, the sensitivity was 98.5% with a
95% confidence interval of 96.5—99.7%, and the
specificity was 97.9% with a 95% confidence interval
of 95.5—99.4%. For the Boosted Decision Stump
Feature Selection classifier, a sensitivity of 91.1%
with a 95% confidence interval of 86.9—94.6% and a
specificity of 94.3% with a 95% confidence interval
of 90.7—97.1% were reported.

1.2.2. Neural networks
Ball et al. [23] applied a three-layer perceptron
artificial neural network (ANN) (Neuroshell 2) with
a back propagation algorithm to analyze mass
spectra for predicting astroglial tumor grade (1
or 2). A prototype approach was developed that
uses a model system to identify mass spectral
peaks whose relative intensity values correlate
strongly to tumor grade. With a three-stage pro-
cedure, they screened a population of approxi-
mately 100,000—120,000 variables and identified
two ions (m/z values of 13,454 and 13,474) whose
relative intensity patterns were significantly
reduced in high-grade astrocytoma. The accuracy
achieved was between 83 and 100% for predicting
tumor grade, however, the sample size for this
study was only 12.

Poon et al. [18] used neural networks to dis-
criminate hepatocellular carcinoma from chronic
liver disease. Two hundred and fifty significant
differentiating proteomic features were identified
with significance analysis of microarrays (SAM).
The ANN model was developed with EasyNN
(Ver. 8.1; Stephen Wolstenholme). The develop-
ment method was of the feed-forward type, and
the networks were trained by weighted back-pro-
pagation. The ANN model was composed of three

layers, one input layer, one hidden layer, and one
output layer, with seven nodes in the hidden layer.
They correctly classified 35 out of 38 hepatocel-
lular carcinoma cases and 18 out of 20 chronic liver
disease cases.

1.2.3. Clustering
Petricoin et al. [16] combined a genetic algorithm
with self-organizing cluster analysis for identifying
ovarian cancer. They reported an optimum discri-
minatory pattern for ovarian cancer, which was
defined by the amplitudes at five key m/z values
534, 989, 2111, 2251 and 2465. A sensitivity of 100%,
with 95% confidence interval of 93—100%, and a
specificity of 95%, with 95% confidence interval of
87—99% were reported.

The same technique was also applied to the
diagnosis of prostate cancer [17]. The amplitudes
at seven key m/z values 2092, 2367, 2582, 3080,
4819, 5439, and 18,220 defined the optimum dis-
criminatory pattern for prostate cancer. They cor-
rectly predicted 36 out of 38 patients with prostate
cancer, resulting in a 95% sensitivity with 95% con-
fidence interval of 82—99%; and 177 out of 228
patients were correctly classified as having benign
conditions, that is, 78% specificity with 95% confi-
dence interval of 72—83%.

Poon et al. [24] applied a two-way hierarchical
clustering algorithm to differentiate hepatocellular
carcinoma from chronic liver disease. Two hundred
and fifty significant differentiating proteomic fea-
tures identified with SAM were subjected to two-
way hierarchical clustering analysis. However, they
did not report sensitivity, specificity, or accuracy.

1.2.4. Manual analysis
Several investigators analyzed mass spectra data
using the Ciphergen System software, combined
with manual visual inspection. The Ciphergen Sys-
tem software was used to detect protein peaks, and
then visually differentiate mass spectra of cancer
patients from those of non-cancer people according
to the protein peaks.

Hlavaty et al. [25] used the Ciphergen System
software to detect peaks in the mass spectra and
found that a 50.8 kDa protein peak was present in all
36 prostate cancer samples, but not in any of the
twenty healthy people.

Watkins et al. [26] used the same method to
detect breast, colon and prostate cancer. They
correctly identified 41/41 (100%) breast cancer
cases and ruled out 27/28 (96%) of the non-cancer
cases. For colon cancer, they correctly identified
43/43 (100%) cancer cases and ruled out 24/28 (86%)
non-cancer cases. For prostate cancer, their results
were the same as that of [25].
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Sauter et al. [27] analyzed the mass spectra data
for nipple aspirate fluid over a 5—40 kDa range, from
twenty breast cancer patients and thirteen healthy
people. They identified five proteins. The most
sensitive and specific proteins were 6500 and
15,940 Da, found in 75—84% of cancer samples
but in only 0—9% healthy people.

1.2.5. Statistical method
Li et al. [28] used the ProPeak package, which
provides an analysis module based on unified max-
imum separability analysis algorithm (UMSA). They
achieved a sensitivity of 93% and a specificity of 91%
for breast cancer detection with bootstrap cross-
validation.

Valerio et al. [29] studied the mass spectra of
thirteen pancreatic cancer patients, nine chronic
pancreatitis patients and ten healthy people. Using
statistical w2-test, they found unique protein peaks
for each of the three groups; however, they did not
report the sensitivity, specificity, or accuracy of
their method.

Cazares et al. [30] applied mass spectrometry
for prostate cancer diagnosis. They used Ciphergen
Peaks 2.1 software for peak detection and a logistic
regression analysis method for classification. A
sensitivity of 93% and specificity of 94% were
reported.

2. Materials and methods

This research takes the top—down approach by
using serum proteomic profiling. Serum SELDI spec-
tra data from patients and a healthy screening
population were used as input. The output sepa-
rates cancer cases from non-cancer screened con-
trols.

2.1. Data

Three serum SELDI MS data sets were used in this
research to identify serum proteomic patterns that
distinguish the serum of ovarian cancer cases from
non-cancer controls. The data sets were down-
loaded from a public website: http://clinicalpro-
teomics.steem.com. As explained on the website,
Dataset I (Ovarian, 16 February 2002) was collected
using the H4 protein chip, and includes 216 total
samples–—100 controls, 100 ovarian cancer, and 16
benign, in which the spectra were exported with the
baseline subtracted, and therefore negative inten-
sities were observed in the data. Due to the dis-
continuation of the H4 chip, the WCX2 chip was
chosen as a replacement in the generation of Data-
set II (Ovarian, 03 April 2002), which has the same

kind of samples as Dataset I. Again these samples
were processed by hand and the baseline was sub-
tracted creating the negative intensities. Dataset III
(Ovarian, 07 August 2002) was also collected using
WCX2 protein array, but a new set of ovarian samples
was used. The sample set included 91 controls and
162 ovarian cancers. The entire process of applying
the samples to the chips was done using a robotic
instrument. The SELDI MS data for each case is an
ASCII file containing 15,155 points of m/z values with
corresponding intensities. Fig. 1 shows three exam-
ples of serum mass spectrum data, which are from a
patient with biopsy-proven cancer, a benign case and
a control case respectively. The x-axis is the ratio of
the molecular weight to the net electrical charge,
and the y-axis is the signal intensity. The distribution
of samples for the three data sets is shown in Table 3.
All samples in each data set are divided into cancer
and non-cancer (including control and benign cases)
classes in this study.

2.2. Methods

2.2.1. Feature extraction
As described in the previous section, the data size of
the protein spectra obtained by SELDI is 15,155
points for each case. It is impractical to use all of
these data as the input features to the classification
because (a) some data points may contain noise and
therefore may increase errors in classification; (b) a
large number of features increase computational
need; (c) it is difficult to define accurate decision-
boundaries in a large dimensional space. The fea-
ture extraction process here is to select the most
significant points of SELDI data as the features for
cancer detection. By training, it tries to remove
irrelevant and/or redundant data points (features)
from the data (feature) set, and finds the minimal
size subset of data points as features that carries
enough information to perform an efficient pattern
classification. However, it is a NP-hard problem
[31]. In our case with a size of 15,155 data points,
the size of the features subset is 215,155. Exhaus-
tively examining all the subsets is computationally
prohibitive. Using a greedy search, such as hill-
climbing would have the attendant the risk of being
stuck in a local maximum.

Feature selection methods can be classified into
two categories [31]. If the feature selection process
does not involve a learning algorithm, it is a filter
approach; otherwise, it is a wrapper approach. One
of the main differences between these two methods
is the evaluation method. In the filter approach,
Euclidean distance measures, information mea-
sures, dependency measures, and consistency mea-
sures are usually used; in the wrapper approach, the

Data mining techniques for cancer detection using serum proteomic profiling 75



Figure 1 SELDI serum mass spectra from a control case, a benign case, and a patient with biopsy-proven cancer
respectively.

Table 3 Distribution of samples

Datasets Number of cancer
cases

Number of control
cases

N u m b e r o f
benign cases

Dataset I Ovarian, 16 February 2002 100 100 16
Dataset II Ovarian, 03 April 2002 100 100 16
Dataset III Ovarian, 07 August 2002 162 91 0
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classifier error rate is used. The main advantage of
the filter approach is its efficiency. Usually, it is
much faster than the wrapper approach, but its
accuracy is lower than the wrapper approach. Both
of these feature selection approaches were
explored in this study.

2.2.1.1. Filter approach with statistical
testing (ST)
The filter approach to feature selection in this study
was implemented by ST using a distance measure
defined as follows

Y ¼ jm1 � m2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 � s1 þ s2 � s2

p (1)

where m1 and m2 are the arithmetic means for the
intensities at each m/z point of the cancer and non-
cancer groups, respectively. s1 and s2 are the stan-
dard deviations of the corresponding intensities at
each m/z point for both cancer and non-cancer
groups.

The N m/z points with largest Y values are chosen
as features, where N is the number of features. For
this study, ten features are selected because our
analysis shows that a feature size of ten is large
enough for classification purpose [32].

2.2.1.2. Wrapper approach with genetic
algorithm (GA)
Using a GA to select the optimal subset of features
shows the robustness of the wrapper approach [33].
It provides the best individual for each generation.
In other words, it is an anytime algorithm which
allows us to allows a balance to be achieved
between the quality of the selected features and
computation time.

Initially, the genetic algorithm generates subsets
(populations) of features uniformly distributed in
the feature space. The learning algorithm evaluates

each individual in the current population and assigns
a fitness value to it. According to the fitness values,
the genetic algorithm performs evolutional opera-
tions (selection, cross over and mutation) on the
current population and produces a new generation
whose individuals would have higher fitness values.
In this way, the genetic algorithm explores the
entire feature space in parallel, and the final result
is globally optimal. In the experiments, we have set
three stopping criteria: (a) the maximum number of
generations is reached, (b) a fitness value of 1
(100%) is obtained, (c) the quality of the best indi-
vidual meets the requirement. Fig. 2 shows the
wrapper approach we used.

The GA algorithm used in feature selection is
Genetic Algorithm Optimized for Portability and
Parallelism (GALOPPS) R 3.2 by Erick D. Goodman,
Michigan State University (http://garage.cps.-
msu.edu/software/software-index.html). It not
only integrates most operators emerging in recent
years, such as multi-field mutation operator, but
also supports different coding methods. The fitness
value is the classification accuracy determined by
the support vector machine (SVM) classifier on indi-
vidual leave-one-out dataset.

By studying the mass spectra, to reduce the
computational load, we assume that the data with
index above 10000 are considered irrelevant. GA
chromosome is coded as a vector of integers whose
range is [0—9999]. Because the m/z values on the x-
axis of the spectra are real numbers, they need to
be mapped into integers. Here the mapping simply
uses their index. For example, the ith m/z value
maps into (i�1), and so on. The parameters values
set for GA are as follows:

� population size: 200;
� maximum number of generations: 8000;
� number of features: 10;

Figure 2 A wrapper approach to feature selection with GA.
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� probability of crossover: 0.5;
� probability of mutation: 0.02.

The evolution operators used in the GA algorithm
are stochastic universal sampling for selection, two-
point crossover and multi-field mutation. For the
purpose of comparison to the filter selection
approach, the number of fields (features) was set
to 10.

2.2.2. Classification method
A SVM was applied in this study as the classifier to
discriminate the proteomic patterns identified by
the two methods described above. SVM was first
introduced by Vapnik [34] and has been recently
proposed as a very effective method for regression,
classification and general pattern recognition [35].
It is considered a good classifier because of its high
generalization performance without the need to
add a priori knowledge, even when the dimension
of the input space is very high.

For a separable classification, given a training set
of S : x1; x2; . . . ; xn, where xi represents the attribute
vector of the examples and belongs to either one of
two classes yi 2 f�1; 1g, a linear SVM finds the
hyperplane leaving the points of the same class
on the same side. The hyperplane can be repre-
sented as:

hðxÞ ¼ signðhw; xi þ bÞ ¼ 1; hw; xi þ b > 0
�1; hw; xi þ b � 0

�

(2)

where w is a weight vector and b the threshold.
Each example is classified into class þ1 or �1

based on which side of the hyperplane it lies on. The
canonical representation of the separating hyper-
plane is obtained by rescaling the pair (w, b) into
the pair (w0, b0), such that

yiðhw0; xii þ b0Þ � 1 (3)

The distance of the closest point to the hyper-
plane equals to 1/w0. These points are called sup-
port vectors.

The SVM approach is based on the structural risk
minimization principle from statistical learning
theory to find the optimal separating hyperplane
(OSH) with the lowest probability of error. OSH
minimizes the risk of misclassifying not only the
examples in the training set but also the yet-to-be-
seen examples of the test set. Vapnik shows that
this goal can be equivalent to finding the hyper-
plane with maximum margin for separable training
sets, i.e. SVM finds the hyperplane to separate the
positive and negative training examples while
maximizing the distance of either class from the
hyperplane [34].

Since the distance of the closest point equals to
1/w0, computing OSH is equivalent to solving the
following quadratic optimization problem

minimize 1
2 hw0;w0i (4)

Subject to yiðhw0; xii þ b0Þ � 1;

i ¼ 1; 2; . . . ;N (5)

Using Lagrangian theory, we can transform the
problem into the dual problem

minimize
X

i

ai �
1

2

X
aiajyiyjhxi; xji (6)

subject to yiðhw0; xii þ b0Þ � 1;

i ¼ 1; 2; � � � ;N a � 0 (7)

where a ¼ ða1; a2; . . . aNÞ are the N non-negative
Lagrange multipliers associated with the con-
straints (2).

For non-separable training set, the problem can
be further transformed into the Soft Margin—Dual
Lagrangian problem

minimize
X

i

ai �
1

2

X
aiajyiyjhxi; xji (8)

subject to
X

i

aiyi ¼ 0;

i ¼ 1; 2; . . . ;N 0 � ai � C (9)

Here the pair (w0, b0) follows that

w0 ¼
X

i

aiyixi (10)

while b0 can be determined from the Kuhn—Tucker
Theorem condition as

ai½yiðhw 0; xii þ bÞ � 1 þ xi� ¼ 0 (11)

ðC � aiÞxi ¼ 0 i ¼ 1; 2; . . . ;N (12)

where xi ¼ 0 ði ¼ 1; 2; . . . ;NÞ for a separable train-
ing set.

Kernels were used for learning non-linear deci-
sion rules by mapping data into a richer feature
space as x ! f ðxÞ. Kernel is a function that calcu-
lates the inner product in some feature space as

Kðx1; x2Þ ¼ hfðx1Þ;fðx2Þi: (13)

Following are two common kernel functions used in
SVM,

polynomial kernel : Kðx1; x2Þ ¼ ðhx1; x2i þ bÞd (14)

Gaussian kernel : Kðx1; x2Þ ¼ e�jjx1�x2jj2=2s (15)

Because no big difference in performance was
observed in classification using SVM with different
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kernels, a linear kernel function (i.e. polynomial
kernel with d ¼ 1) was used in this study to save the
training time and reduce the probability of over-
fitting. For numerical stability reasons, the kernel
function was normalized by a factor of 20, which
was selected empirically.

3. Results

We applied the proposed methods to the task of
ovarian cancer detection using serum SELDI MS
data. As listed in Table 3, three datasets were used
for the training and testing; each of them contains
biopsy proven ovarian cancer, control and benign
samples. Because this is detection task, the serum
samples in each dataset are divided into cancer and
non-cancer groups in which the control and benign
samples are grouped as a non-cancer set.

Two SVMs were trained using the features
selected by statistic measure (SVM-ST) and GA algo-
rithm (SVM-GA), respectively. Due to the limited
size of each dataset, cross-validation within the
original dataset was utilized to provide a nearly
unbiased estimation of classification. In this study,
leave-one-out cross validation is used for evaluation
of cancer detection performance. For each classi-
fication, the true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) values are
obtained. Accordingly accuracy, sensitivity, speci-
ficity, positive predictive value (PPV) and negative
predictive value (NPV) are calculated. Please note
that the calculation of PPV and NPV follows Baye-
sian Theorem with a prevalence of 50 per 100,000,
i.e. P ¼ 0.0005 [36].

Table 4 lists the results of detection on three
datasets with two different feature selection meth-
ods.

By varying the decision threshold of the SVM clas-
sifier, we can compute a receiver operating charac-
teristic (ROC) curve, describing the trade-off
between specificity and sensitivity. Using the area

under the ROC curve (Az value), we can compare the
performance of different classification tasks. In this
study, the program ROCKIT provided by Charles E.
Metz at the University of Chicago generated the ROC
curves. Fig. 3 presents the ROC curves of the detec-
tions with Az values. Please note that the detection
performanceofSVM-GAonDataset III is sogood (100%
accuracy) that its ROC curve could not be generated
by the ROCKIT program (Az value is 1.0).

4. Discussions

The following observations resulted from this study:
(1) overall, data mining techniques can be success-
fully applied to ovarian cancer detection with a
reasonably high performance; (2) the classification
using features selected by the genetic algorithm
consistently outperformed that by filter approach
feature selection. The GA based method is also less
sensitive to the variation of datasets; (3) although
the Dataset I and Dataset II include the same sam-
ples, the detection result on Dataset II is much
better than that on Dataset I especially for detec-
tion with features selected by the filter approach. A
reasonable explanation is that the SELDI data col-
lected using WCX2 protein array is better than that
by using H4 protein chip in terms of discrimination
of proteomic profiling, even though both chips are
from the same company (Ciphergen Biosystems,
CA); (4) good detection results were obtained by
both SVM-ST and SVM-GA methods on Datasets II and
III, indicating that WCX2 proteomic array is a good
profiling chip for discrimination.

Another important observation from our study is
that for Dataset I (Ovarian, 16 February 2002), Pet-
ricoin et al. [16] reported a sensitivity of 100% (95%
confidence interval 93—100), specificity of 95% (87—
99), and PPV of 94% (84—99) by using a bioinformatic
tool combining a GA with self-organizing cluster
analysis for identifying ovarian cancer. Based on
the same data set, we achieved a sensitivity of 79

Table 4 Detection results

Data set TP FP FN TN Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

PPV
(%)

NPV
(%)

Detection with features selected by filter approach with ST (SVM-ST)
Dataset I Ovarian, 16 February 2002 79 23 21 93 79.0 80.1 79.6 0.20 99.99
Dataset II Ovarian, 03 April 2002 98 6 2 110 98.0 94.8 96.3 0.93 100.00
Dataset III Ovarian, 07 August 2002 160 3 2 88 98.8 96.7 98.0 1.48 100.00

Detection with features selected by wrapper approach with GA (SVM-GA)
Dataset I Ovarian, 16 February 2002 96 6 4 110 96.0 94.8 95.4 0.92 100.00
Dataset II Ovarian, 03 March 2002 98 1 2 115 98.0 99.1 98.6 5.17 100.00
Dataset III Ovarian, 07 August 2002 162 0 0 91 100.0 100.0 100.0 100 100.00
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and 96%, specificity of 80.1 and 94.8%, PPV of 0.20
and 0.92%, and NPV of 99.99 and 100% by using SVM as
the classifier with two different feature selections,
respectively. The performance difference results
from the classification/feature selection methods
as well as the evaluation methods. As described
above, a leave-one-out cross validation was used
here while in the Petricoin’s study, the dataset
was split into two subsets, one half (50 cancer and
50 non-cancer samples) was used as a training data
while the second half (50 cancer and 66 non-cancer
samples) was used as a test set.

The NPV is naturally high for screening applica-
tions. However, due to the low prevalence of
ovarian cancer in the general population, the
PPV is expected to be low. The PPV of 94% reported
in [16] is not the PPV for real world screening.
Instead it is the PPV for their experimental popu-
lation composed of half cases and half controls.
Using a more realistic prevalence of 50 per 100,000
for ovarian cancer for calculation, the PPV for
their study would be about 0.99%. Both their study
and ours suggest that the PPV for data set Ovarian,
16 February 2002 would be low if applied as a real
world screening test. Again assuming a prevalence
of 50 per 100,000, to obtain a PPV of 50%, one
needs to reach a sensitivity of 100% and specificity
of 99.95%; to obtain a PPV of 90%, one needs to get
a sensitivity of 100% and specificity of 99.995%.
Thus, to develop a screening tool for the general
population, further study is needed to achieve
better results from serum proteomic profiling of
ovarian cancer.

It must be pointed out that at the proteomic
level, there may be two types of ‘biomarkers’ that
can be related to cancer. It could be that cancer
results in the presence of specific protein(s), which
is/are not present in the non-cancer environment.
The cancer can be diagnosed by detecting the
physical presence of this/these specific protein(s).
Alternatively, the cancer may not lead to expres-
sion of a novel protein. Instead, it may change the
complex proteomic pattern of the tumor-host
microenvironment. In this case, the ‘‘biomarker’’
may be those normal host proteins that are aber-
rantly increased or decreased in abundance. This is
an application where the data-mining techniques
can be most helpful. A pattern analysis approach
takes into consideration this gain or loss of global
protein expression, not limited to any single pro-
tein molecule. Although the extracted pattern
may not be able to lead to the physical protein
identity for its every feature, it can still be used
for cancer classification, as long as it achieves high
accuracy. In this context, there may be more
than one pattern that can discriminate a certain

Figure 3 The ROC curves of SVM-ST and SVM-GA
detections on: (a) Dataset I; (b) Dataset II; and (c)
Dataset III (Az ¼ 1 for SVM-GA on Dataset III).
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cancer. There may not be a single universal pro-
teomic pattern for a specific cancer. It is based on
this presumption that, even though the protein
patterns are used as a detection/diagnosis para-
digm, the data mining approach to cancer detec-
tion proceeds independently from the pursuit of
the physiologic source and identity of these pro-
teins. Therefore, in the context of data mining for
cancer detection, discrimination of cancer from
normal does not depend solely upon the identity
and origination of cancer-related proteins. In fact,
the identified discriminatory features (proteomic
patterns) can be very different from one selection
method to another. Also, the pattern selection and
its classification efficiency are highly classifier
dependent. To illustrate this fact, a cross evalua-
tion was taken by using different features. Listed
in Table 5 are the detection results of SVM with
different features on Dataset I, in which SVM-REF is
SVM trained and tested with the ‘‘reference’’
features identified in [16]. The ROC curves
of detection on Dataset I using SVM-ST, SVM-GA
and SVM with ‘‘reference’’ features are shown in
Fig. 4. There is obviously a big drop in detection
performance when the diagnostic patterns identi-
fied in [16] were ‘‘transplanted’’ to the SVM
method. Accuracy is also worse than that obtained
by the methods developed in this study.

5. Conclusions

Recent improvements in technology to detect,
identify, and characterize proteins, particularly
two-dimensional electrophoresis and mass spectro-
metry, coupled with development of bioinformatic
databases and analysis software, make proteomics a
powerful approach to identify new tumor markers.
Nevertheless, large-scale studies will be necessary
to validate these initial results and to determine
clinical utility, assay reproducibility, and accuracy
for diagnosis/prognosis of cancer.

This paper reviews the research of data mining
techniques applied to proteomics for cancer detec-
tion/diagnosis. An SVM-based approach was applied
to ovarian cancer detection using serum proteomic
profiling MS data, in which statistical testing and
genetic algorithm based methods were used for
feature selection respectively. This study suggests
that it is feasible to combine serum protein profiling
with artificial intelligence learning algorithms to
classify cancer samples from benign and/or normal
controls with a top—down approach. Because these
m/z values were found to be reproducibly detect-
able, only m/z values (a total of ten values in our
study) are required to make an accurate detection.
Their identities at the protein or molecular level are
not necessary for classification purpose. However,
due to the fact that knowing the identities of these
discriminating substances is critical in understand-
ing their biological role these peptide/proteins may
have in the oncogenesis of ovarian cancer, and in
identifying potential therapeutic targets, further
research with bottom-up approach to purify, iden-
tify and characterize these protein/peptide biomar-
kers is important.

Further research will focus on feature design and
selection. In this study all intensity values at the full
m/z range are taken as potential features. Due to
the high dimensionality, this method leads to a
time-consuming and possibly suboptimal feature
selection. The peaks of MS data have been used
as the classification features in some studies,
however the description of peaks was limited to
their intensity values. More advanced features
derived from each peak including its width, area,
and height/width ratio may improve detection/
diagnosis performance. In addition, validation on

Table 5 A comparison of detection results of SVM with different features

Methods TP FP FN TN Sensitivity (%) Specificity (%) Accuracy (%)

SVM-ST 79 23 21 93 79.0 80.1 79.6
SVM-GA 96 6 4 110 96.0 94.8 95.4
SVM-REF 47 19 53 97 47.0 83.6 66.7

Figure 4 A comparison of SVM-ST, SVM-GA and SVM
with ‘‘reference’’ features.

Data mining techniques for cancer detection using serum proteomic profiling 81



extended database is also needed by including more
cancer and control samples. How to integrate pro-
teomic data and clinical data for improving early
cancer detection is another very interesting and
challenging research topic to be studied in future
research.
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