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Abstract

The generalization properties of support vector machines (SVMs) are examined. From a geometrical point of view, the estimated

parameter of an SVM is the one nearest the origin in the convex hull formed with given examples. Since introducing soft margins is

equivalent to reducing the convex hull of the examples, an SVM with soft margins has a different learning curve from the original. In this

paper we derive the asymptotic average generalization error of SVMs with soft margins in simple cases, that is, only when the dimension of

inputs is one, and quantitatively show that soft margins increase the generalization error.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, support vector machines (SVMs) have

attracted much attention as a new classification technique

with good generalization ability in applications such as

pattern classification (Cristianini & Shawe-Taylor, 2000;

Schölkopf, Burges, & Smola, 1998; Smola, Bartlett,

Schölkopf, & Schuurmans, 2000; Vapnik, 1995, 1998).

The basic idea of SVMs consists of mapping input vectors

into a high-dimensional feature space and separating the

feature vectors linearly with the optimal hyperplane in terms

of margins, i.e. the distances of given examples from a

separating hyperplane.

To assure convergence in linearly inseparable cases

and to avoid overfitting to noisy data or outliers in examples,

soft margins have been introduced in SVMs, which

make them less sensitive to given examples, using slack

variables for margin-constraint violation (Cristianini &

Shawe-Taylor, 2000; Vapnik, 1995, 1998).
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The theoretical background for the generalization ability

of SVMs has been presented mainly in a framework of

probably approximately correct (PAC) learning (Cristianini

& Shawe-Taylor, 2000; Vapnik, 1995, 1998) where a kind of

complexity of a learning-machine class called the VC

dimension plays an important role (Vapnik & Chervonenkis,

1971). Another criterion for measuring the generalization

ability is the average generalization error (Amari, 1993;

Amari, Fujita, & Shinomoto, 1992; Amari & Murata, 1993;

Baum & Haussler, 1989; Ikeda & Amari, 1996; Opper &

Haussler, 1991) called a learning curve. Studies of the

learning curves of kernel methods, including SVMs, are still

being developed both from a statistical mechanical approach

(Dietrich, Opper, & Sompolinsky, 1999; Opper & Urbanc-

zik, 2001; Risau-Gusman & Gordon, 2000) and an

asymptotic statistical approach (Ikeda, 2003, 2004a,b).

The former approach takes noise into account in terms of a

finite temperature (Opper & Urbanczik, 2001), not soft

margins. So far, the latter approach has never considered

soft margins. Intuitively speaking, introducing soft margins

increases the generalization error if the given problem is

linearly separable, although it is necessary in inseparable

cases. In this paper, we review the geometrical meaning of

soft margins and quantify the effects of soft margins on the

asymptotic generalization ability in simple cases, that is,

where the input space is one-dimensional. Although we

analyze only noiseless and one-dimensional cases, the rather
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negative result shown later, that the generalization error

goes up as the softness increases, is important since, in

general, we do not know if the given data are noisy, nor do

we know the degree of noise involved. This work gives

practitioners who employ the soft-margin technique a

warning about the risk in generalization performance.
2. Geometry of support vector machines

Here, we formulate SVMs and consider their geometrical

meaning. Although an SVM non-linearly maps input

vectors to the corresponding feature vectors, we regard the

feature vectors as the input vectors and consider, for brevity,

a homogeneous linear dichotomy called a Perceptron

whose separating function is represented by w 0x, where 0

denotes the transpose. Note that an inhomogeneous linear

dichotomy whose separating function is represented by

w 0xCb is easily transformed to a homogeneous one ~w0 ~x
using ~w0Z ð ~w0; bÞ and ~x0Z ðx0; 1Þ, which is referred to as

lifting up (Fig. 1).

Suppose a set FN of N examples (xn, yn), nZ1; 2;.;N,

is given. Then, since the margin of a separating hyperplane

denoted by w is defined as the minimum distance between

the examples and the hyperplane, it is expressed as

minn w0fn=kwk, where fnZynxn. Note that introducing fn

can be regarded as making all of the examples positive

(Fig. 1). The problem of finding ŵ that maximizes the

margin is equivalent to the following optimization problem

with linear inequalities,

min
w

1

2
kwk2 s:t: w0fnR1; n Z 1;.;N; (1)

if the given examples are linearly separable, i.e. there exists

a hyperplane that separates the examples correctly. The

above problem can be rewritten as

min
w

max
a

Lðw;aÞ; (2)

Lðw;aÞ Z
1

2
kwk

2 K
XN

nZ1

anðw
0fn K1Þ (3)
o

w

w~

+1

−1

Fig. 1. Geometrical view of lifting up where the origin is denoted by O.

Since the distances from ~w are proportional to those from w, the lifting up

does not change the problem of separating the examples at all. Neither does

the transformation of a negative example shown by ! to a positive one

shown by B.
using the Lagrangian multipliers anR0, nZ1;.;N, where

aZ ða1;.;aNÞ
0. Hence, by differentiating L(w,a) by w and

a, the condition is derived under which w is a saddle point

of L(w,a):

vL

vw
Z w K

XN

nZ1

anfn Z 0: (4)

This means that the solution of the problem (1) is of the

form

ŵ Z
XN

nZ1

anfn; 0%an; (5)

and, in addition, problem (1) is equivalent to

min
a

1

2
kwk2 K

XN

nZ1

an

" #
; (6)

which is a quadratic programming problem with linear

constraints. This is called the dual problem of (1).

Let us consider a rather general problem

min
w;b

1

2
kwk2 Kb

� �
s:t: w0fnRb: (7)

This is equivalent to what is called the v-SVM (Schölkopf,

Smola, Williamson, & Bartlett, 2000) without soft margins.

It is obvious that this problem reduces to (1) if we fix b to

unity and hence the solution of (1) is a suboptimal solution

of (7). The dual problem of (7) is written as

min
a

1

2
kwk2 s:t: w Z

XN

nZ1

anfn; 0%an%1;
XN

nZ1

an Z 1:

(8)

From a geometrical point of view, (8) means that the

solution ŵ is the point nearest the origin in the convex hull

of FN, i.e. the smallest convex set that contains all points in

FN, where FN is the set of vectors fn, nZ1;.;N.

Note that (Bennett & Bredensteiner, 2000) has con-

sidered two convex hulls in an affine space that consist of

positive and negative examples, whereas we consider only a

single convex hull of all of the given examples.
3. Geometry of SVMs with soft margins

When the example set FN is not linearly separable, the

margin cannot be positive and no ŵ exists that satisfies (1).

This leads to the optimal a diverging in (6) and the optimal

w being 0 in (7) and (8). Hence, SVMs do not work properly

in this situation. To cope with this limitation, slack variables

xn, nZ1;.;N, have been introduced that allow the margin



O

Fig. 2. Points nearest the origin O of the convex hull (the dashed line, CZ1)

and the reduced convex hull (the gray solid line, CZ1=2) of examples

shown by B’s.
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constraints to be violated in the following way,

min
w;x

1

2
kwk

2 CC
XN

nZ1

xn

" #
s:t: w0fnR1 Kxn; xnR0;

(9)

where C is a given constant and xZ ðx1;.; xnÞ
0. The v-SVM

with soft margins is formulated in the same way as

min
w;x;b

1

2
kwk2 CC

XN

nZ1

xn Kb

" #
s:t: w0fnRb Kxn; xnR0:

(10)

Note that this is of a slightly different form to the original

v-SVM introduced by Schölkopf et al. (2000). However,

their equivalence can easily be proven taking into account

1=nZCN. The dual problem of (10) is written as

min
w

1

2
kwk2 s:t: w Z

XN

nZ1

anfn; 0%an%C;
XN

nZ1

an Z 1:

(11)

This means that ŵ has the same form as (8) but has different

constraints, 0%an%C, which represent the so-called

reduced convex hull introduced in Bennett and Breden-

steiner (2000). We only consider the problem of the point in

the reduced convex hull nearest the origin in the following

sections.

Let us consider here a variant of the introduction of soft

margins which employs the L2-norm instead of the L1-norm

in (10), i.e.

min
w;x;b

1

2
kwk2 C

C

2

XN

nZ1

x2
n Kb

" #
s:t: w0fnRb Kxn; xnR0;

(12)

and its dual problem

min
a;x

1

2
kwk2 C

C

2

XN

nZ1

x2
n

" #

s:t: w Z
XN

nZ1

anfn; 0%an%Cxn;
XN

nZ1

an Z 1:

(13)

Since it is clear that the optimal value of xn is an/C, (13) can

be rewritten as

min
a

1

2
kwk2 C

1

2C

XN

nZ1

a2
n

" #

s:t: w Z
XN

nZ1

anfn; 0%an;
XN

nZ1

an Z 1:

(14)

This problem is essentially the same as (8), the only

difference being their kernel functions. That is, (14) employs

Kðxn;xmÞZ x0
nxm Cdnm=C
as a kernel function instead of the inner product x0
nxm in (8)

where dnm is the Cronecker delta. Hence, we can rewrite (14)

in the form of (8) by a certain coordinate transformation. So,

we consider only (10) and (11) in the following.
4. Reduced convex hull

Fig. 2 shows examples of ŵ when CZ1 and C!1.

Suppose that C is the inverse of a natural number M. Then,

the reduced convex hull of FN with CZ1=M is equivalent to

the convex hull of the set ~FN of NCM vertices, each of which

is a center of gravity of M distinct vectors in FN. In fact, it is

easily shown that any point in the reduced convex hull of FN

is written as a non-negatively weighted sum of vectors in ~FN

(Ikeda & Aoishi, 2002). This means that soft margins reflect

the ditribution of examples in the convex hull of FN which is

neglected in hard margins’ case. For example, a large

amount of area is reduced where examples are sparsely

distributed (right area in Fig. 2), while less where examples

are dense (left area in Fig. 2).

Since the center of M examples has a different

distribution from the given examples, introducing soft

margins in some sense means changing the distribution of

the examples. Intuitively, averaging the data increases the

signal-to-noise ratio if each input of the examples, xn, has an

independent additive noise. In such a case, the separating

hyperplane with hard margins is too sensitive to the noise

and is expected to have a larger generalization error. Hence,

the use of soft margins may improve the performance. In the

noiseless case, however, averaging the data decreases the

probability that points in the neighborhood of the separating

hyperplane appear. This means that the learning machine

loses information to some extent about the correct boundary

and has a larger generalization error since the probability

that a test input is chosen in the neighborhood of the

separating hyperplane is unchanged.

In the following, we derive the learning curves of SVMs

with soft margins in simple cases, providing the input space

is one-dimensional and that the given data are noiseless and

linearly separable. The derivation is performed using the

fact that an SVM with soft margins given FN is equivalent to

an SVM with hard margins given the centers of M vectors in

FN as examples.
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θL
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ŵ*w

θ

Fig. 4. SVM solution in the case of mZ1.
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5. Average generalization error of SVMs

Let us fix the true parameter vector w* Z ð0;.; 0; 1Þ0 2
Sm and assume that N inputs, xn, nZ1;.;N, are

independently uniformly chosen from Sm, where Sm is an

m-dimensional unit sphere. Then, the vectors fnZynxn,

nZ1;.;N, are uniformly distributed in Sm
C where

yn Z sgnðw*
0

; xnÞ; (15)

sgnðsÞ Z
C1; if sR0;

K1; otherwise;

(
(16)

Sm
C Z ffjw�0

fR0; f 2Smg: (17)

In this case, the probability that an estimate ŵ mispredicts

the output of a new input x is written as q/p where q is the

angle between ŵ and w* (Fig. 3). In this paper, we define the

average generalization error as the probability that an

estimate ŵ mispredicts the output of a new input averaged

over the given examples, which is often termed the

prediction error. In the following subsections, we derive

the average generalization error of SVMs for mZ1 in the

asymptotic limit of N/N.
5.1. Hard margins’ case

We first consider the case of hard margins, MZ1, where

the nearest point in the convex hull of examples is the

midpoint of the two examples nearest to both endpoints of

the semicircle S1
C. Let the two examples be denoted by fL

and fR, and their angles with the endpoints by qR and qL,

respectively. Then, the SVM solution ŵ is written as ðfLC
fRÞ=2 and its angle q with w* becomes qZ jqLKqRj=2, as

shown in Fig. 4.

Since the examples are independently chosen, the

probability that the angle Q of the nearest point with an

endpoint is less than qL is written as

Prob½Q%qL
 Z 1 K 1 K
qL

p

� �N

;

ŵ
*w

θ

Fig. 3. The generalization error of ŵ is written as q/p. When a new input f is

chosen from the shadowed area in the input space Sm
C, the estimate ŵ

mispredicts the output of f.
and thus the density function is

pðqLÞ Z
N

p
1 K

qL

p

� �NK1

:

In the same way, when qL is fixed, the conditional

probability density function of qR, that is pðqRjqLÞ is written

as

pðqRjqLÞ Z
N K1

p KqL

1 K
qR

p KqL

� �NK2

:

Hence, the average generalization error eg(N) is written as

egðNÞ Z

	
jqR KqLj

2p




Z
1

2p

ð
p

0

ð
pKqL

0
jqL KqRjpðqRjqLÞdqRpðqLÞdqL

Z
1

2p

ðp

0

ðpKqL

0
jqL KqRj

N

p

!
N K1

p
1 K

qL CqR

p

� �NK2

dqRdqL: (18)

By setting sZqLCqR and tZqL KqR, (18) is calculated as

egðNÞ Z
1

2p

ðp

0

ðs

Ks
jtj

N

p

N K1

p
1 K

s

p

� NK2 1

2
dtds

Z
1

2ðN C1Þ
:

5.2. Soft margins’ case

In the case of a fixed MR2, we consider the center of

gravity of the nearest M examples from each endpoint. If we

know the distributions of the angles qR and qL of fL and fR

with endpoints, where fL and fR are the centers of the M

examples nearest each of the endpoints, we can

derive the average generalization error since the SVM

solution ŵ is written as ðfL C fRÞ=2 and its angle q with w* is

qZ jqL KqRj=2 as seen in the preceding subsection. Hence,

we will consider the distributions first.

Let us denote by ql the angle between the (lK1)st and lth

nearest examples to an endpoint named L (Fig. 5). Then, the

conditional probability density function of each angle at



θ1

θl

θl−1

Fig. 5. Distribution of angles. ql is the angle between the (lK1)st and lth

nearest examples.
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the endpoint is written as

pðqljq1;.; qlK1Þ

Z
N K ðl K1Þ

p K
P

j!l qj

1 K
ql

p K
P

j!l qj

� �NKl

; (19)

and that of the angle qRl between the (lK1)st and lth nearest

examples to the other endpoint named R

pðqRljqR1;.;qRlK1;q1;.;qlÞ

Z
NK2lC1

pK
P

j!lqRjK
P

j!lqj

1K
qRl

pK
P

j!lqRjK
P

j!lqj

� �NK2l

(20)

in the same way as in the case of hard margins. Let us show

for the sake of clarification the case where MZ2. Since the

midpoint of the first and second nearest examples to an

endpoint is a nearest center, its angle qL to the endpoint and

its density p(qL) are written using (19) as

qLZ
q1Cðq1Cq2Þ

2
;

pðqLÞZ

ð2qL

0
p1 qLK

h

2

� 
p2 hjqLK

h

2

� 
dh

Z

ð2qL

0

N

p

NK1

p
1K

qL

p
K

h

2p

� �NK2

dh

Z
2N

p
1K

qL

p

� �NK1

K
2N

p
1K

2qL

p

� �NK1

;

respectively, when qL%p=2, where p1 and p2 denote the

density functions of q1 and q2, that is p(q1) and p(q2jq1).

When qLOp=2

pðqLÞZ

ðp

0

N

p

NK1

p
1K

qL

p
K

h

2p

� �NK2

dh

Z
2N

p
1K

qL

p

� �NK1

K
2N

p
1K

qLC1=2

p

� �NK1

:

For an arbitrary M, since the center of gravity of the M

nearest examples to the endpoint L is a nearest point in
the reduced convex hull, the angle qL satisfies

qLZ
q1Cðq1Cq2ÞC/C

PM
iZ1qi

M
; (21)

qLZ
XM

iZ1

MC1Ki

M
qi; (22)

qLZ
XM

iZ1

i

M
qMC1Ki; (23)

and hence its density p(qL) is written as

pðqLÞZ
N

pðMK1Þ!

!
XM
iZ1

iMK1ðK1ÞMKi
MCi 1K

MqL

pi

� �NK1

; (24)

when qL!p/M. See Appendix A for proof. Note that

Prob qLO
p

M

h i
Zo

1

N

� �
:

See Appendix B for proof.

In the same way, the density p(qR) of the other nearest

center is calculated as

pðqRÞ Z
N

pðM K1Þ!

!
XM
iZ1

iMK1ðK1ÞMKi
MCi 1 K

MqR

pi

� �NK1

; (25)

when qR!p=M. In the following, we use the approximation

that

pðqL; qRÞ Z pðqLÞpðqRÞ; (26)

although qL and qR do not satisfy this since they are made

from the same example set. In fact, the density pðqRjq1; q2;

.; qMÞ can be derived in the same way as (19) and (24) as

pðqRjq1; q2;.; qMÞ

Z
N KM

PRðM K1Þ!

XM
iZ1

iMK1ðK1ÞMKi
MCi 1 K

MqR

PRi

� �NK1

(27)

where PRZpK
P

j%M qj approaches p as the number N of

examples increases, because the probability decreases

exponentially that ql, lZ1;.;M takes a large value from

(19) and Appendix B. This means that the approximation

above holds true asymptotically in the limit of N/N.

Using the distribution (26), the asymptotic average

generalization error for an arbitrary M can be derived as

follows. Since the average prediction error eg(N) is written as

egðNÞ Z

	
jqR KqLj

2p



;
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it has the following upper and lower bounds as

1

2p

ð
d=M

0

ð
d=M

0
jqL KqRjpðqLÞpðqRÞdqLdqR%egðNÞ

%
1

2p

ðd=M

0

ðd=M

0
jqL KqRjpðqLÞpðqRÞdqLdqR

Cp Prob qL O
d

M

� �
Cp Prob qR O

d

M

� �

for an arbitrary 0!d%p, which means that eg(N) converges

to the left-hand side as N increases because it is of the order

O(1/N), as shown below. From (24)–(26),

1

2p

ðd=M

0

ðd=M

0
jqL KqRjpðqRÞpðqLÞdqRdqL

Z
1

2p

N2M2

p2ðM!Þ2
XM
iZ1

XM
jZ1

iMK1jMK1ðK1ÞiCj
MCiMCj

!

ðd=M

0

ðd=M

0
jqL KqRj 1 K

MqR

pi

� �NK1

! 1 K
MqL

pj

� �NK1

dqRdqL: ð28Þ

In the following, we use the approximation that

1 K
MqR

pi

� �
1 K

MqL

pj

� �
Z 1 K

MqR

pi
K

MqL

pj

� �
; (29)

where qRqL is neglected since it is less than d2/M2 and d can be

arbitrary small. Then, the integral of (28) is calculated asð
d=M

0

ð
d=M

0
jqL KqRj 1 K

MqR

pi
K

MqL

pj

� �NK1

dqRdqL

Z 2

ðd=M

0

ðd=M

qL

ðqR KqLÞ 1 K
MqR

pi
K

MqL

pj

� �NK1

dqRdqL

Z 2

ðd=M

0

p2i2

M2NðN C1Þ
1 K

ði C jÞMqL

pij

� �NC1

dqL Co
1

N

� �

Z
2p3i3j

M3NðN C1ÞðN C2Þði C jÞ
Co

1

N

� �
:

Hence

egðNÞZ
1

NMðM!Þ2
XM
i;jZ1

ðK1ÞiCjiMC2jMMCiM
MCj

i C j
Co

1

N

� �
:

(30)

For example, egðNÞZð7=12NÞCoð1=NÞ for MZ2 and

egðNÞZð239=360NÞCoð1=NÞ for MZ3.
5.3. Asymptotic analysis

Suppose 1/M/N, where M is so large that 1/M can

be neglected compared to O(1) and N is so large that the

approximation (26) still holds true even when M is large.
Then, an asymptotic analysis on M can be given as follows.

From (19) and (20), the joint distribution of q1;.; qM ; qR1;

.; qRM is written as

pðq1;.; qM ; qR1;.; qRlÞ

Z
N!

p2MðN K2MÞ!
1 K

P
j%M qj C

P
j%M qRj

p

� �NK2M

:

(31)

We approximate the above to an exponential distribution,

that is

pðq1;.; qM ; qR1;.; qRlÞ

Z
N2M

p2M
exp K

N

p

XM

iZ1

qi C
XM
jZ1

qRj

 !" #
; (32)

which is based on neglecting the second- and higher-order

terms of ql and qRl, as is done in (29). From (32), the moment

generating function f(t) of ðqLKqRÞ=M
1=2 is written as

fðtÞ Z
D

exp t
qL KqR

M1=2

� �E
(33)

¼
YM
i¼1

D
exp

M þ 1 K i

M3=2
tqi

� �E

!
YM
j¼1

D
exp K

M þ 1 K j

M3=2
tqRj

� �E
(34)

¼
YM
i¼1

1

1 K pi
NM3=2 t

YM
j¼1

1

1 þ pj

NM3=2 t
(35)

¼
YM
i¼1

1

1 K p2i2

N2M3 t2
: (36)

Hence the cumulant generating function jðtÞZ log fðtÞ is

written as

jðtÞ ZK
XM

iZ1

log 1 K
p2i2

N2M3
t2

� �
(37)

¼ t2
XM
i¼1

p2i2

N2M3
þ O

1

N2M

� �
(38)

¼
p2

3N2
t2 þ O

1

N2M

� �
: (39)

This means that (qLKqR) asymptotically obeys a normal

distribution with mean zero and variance ð2p2M=3N2Þ when

M/N and N/N. Therefore, the average of the absolute

value jqLKqRj is asymptotically

hjqL KqRji Z
2
ffiffiffi
p

p
M1=2ffiffiffi

3
p

N
Co

M1=2

N

� �
: (40)
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Hence, the average generalization error for a large M is

egðNÞ Z
M1=2ffiffiffiffiffiffi
3p

p
N

Co
M1=2

N

� �
: (41)
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Fig. 7. Coefficient of the average generalization error versus the parameter

MZ1=C.
6. Computer simulations

To confirm the validity of the theoretical analysis given

above, some computer simulations were carried out. In each

of the experiments below, the average generalization error

was calculated as q/p where q is the angle between the true

parameter w* Z ð0; 1Þ0 and the SVM solution ŵ.

Fig. 6 shows the average generalization error versus the

number of examples. The stars, crosses and circles show the

experimental average generalization errors averaged over

100 trials for MZ1, 3 and 5, respectively. The solid, dashed

and dotted lines represent the theoretical average general-

ization errors for MZ1, 3 and 5, respectively. The

theoretical values agree well with the experimental data

and the validity of the analysis is confirmed.

To see the relationship between soft margins and the

average generalization errors more clearly, we plot the

coefficient of the average generalization errors versus M in

Fig. 7. Here, the crosses represent the experimental results

with 1000 examples averaged over 3000 trials whereas the

solid curve represents the theoretical value shown in (30).

They agree well and the validity of the analysis is confirmed

again.

Fig. 8 shows the coefficient of the average generalization

errors versus M for large M’s where the crosses represent the

experimental results with 5000 examples averaged over

1000 trials, and the solid line represents the theoretical value

shown in (39). Once again, the results validate the

asymptotic analysis.
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Fig. 6. Learning curve of SVMs with soft margins in the one-dimensional

case.
7. Conclusions and discussions

The effects of soft margins on the generalization ability

of SVMs have been examined. We derived the asymptotic

average generalization errors in the simple noiseless case of

mZ1 under the assumption that the parameter C, which

represents the ‘softness’ of margins, is the reciprocal of a

positive integer M. The results show that soft margins

increase the generalization errors. Although we analyze

only noiseless and one-dimensional cases, the results

contribute to the knowledge of practitioners using the

soft-margin technique since its risk in generalization

performance has until now been unknown.

This can intuitively be interpreted as the fact that soft

margins average the given data and decrease the probability

that points lie in the neighborhood of the separating

hyperplane, whereas the probability that a test input is
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Fig. 8. Coefficient of the average generalization error versus the parameter

MZ1=C[1.
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chosen from this area remains constant. However, in

general, the process of averaging increases the signal-to-

noise ratio and improves the robustness against additive

noise. Hence, when we have some knowledge about the

noise in given data, it may be possible to choose a better

parameter C. This work presents some fundamental research

in this area. The analysis for more general cases including

noisy data is the subject of future work.
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Appendix A. Density function of qL

Let fk(d) be the conditional probability density function

of dk Z
Pk

iZ1ði=MÞqMC1Ki where N examples are uniformly

chosen from S1
C and q1; q2;.; qMKkK1 are given. We will

show that

fkðdÞ Z
MðN KM CkÞ

Pk!

!
Xk

iZ1

ikK1ðK1ÞkKi
kCi 1 K

Md

Pi

� �NKMCkK1

; (A1)

by mathematical induction where PZpK
P

j!MKk qj. If

(A1) holds true for k, fkC1(d) can be written as

fkC1ðdÞ Z

ðMd=ðkC1Þ

0
fk d K

k C1

M
h

� �
pMKkðhÞdh;

where pkC1 is the density function of qkC1, that is

pðqMKkjq1;.; qMKkK1Þ

Z
N KM Ck C1

P
1 K

qMKk

P

� �NKMCk

: (A2)

Hence

fkC1ðdÞ

Z

ðMd=ðkC1Þ

0

MðN KM CkÞ

ðPKhÞk!

!
Xk

iZ1

ikK1ðK1ÞkKi
kCi 1K

Mðd KðkC1Þh=MÞ

ðPKhÞi

� �NKMCkK1

!
N KM CkC1

P
1K

h

P

� NKMCk

dh (A3)
¼
M

k!

Xk

i¼1

ikK1ðK1ÞkKi
k Ci

ðMd=ðkþ1Þ

0

N KMþ kþ1

P

!
N KMþ k

P
1K

Md Kðkþ1KiÞh

Pi

� �NKMþkK1

dh

(A4)

¼
M

k!

Xk

i¼1

ikK1ðK1ÞkKi
k Ci

N KMþ kþ1

P

!
i

kþ1Ki
1K

Md

Pðkþ1Þ

� �NKMþk�

K 1K
Md

Pi

� �NKMþk�
(A5)

¼
MðNKMþkþ1Þ

Pðkþ1Þ!

Xk

i¼1

ikðK1Þkþ1Ki

!kþ1Ci! 1K
Md

Pi

� �NKMþk

K 1K
Md

Pðkþ1Þ

� �NKMþk� �
(A6)

¼
MðNKMþkþ1Þ

Pðkþ1Þ!

!
Xk

i¼1

ikðK1Þkþ1Ki
kþ1Ci

kþ1kþ1 1K
Md

Pi

� �NKMþk

K
MðNKMþkþ1Þ

Pðkþ1Þ!
1K

Md

Pðkþ1Þ

� �NKMþk

!
Xk

i¼1

ikðK1Þkþ1Ki
kþ1Ci

kþ1kþ1

(A7)

¼
MðNKMþkþ1Þ

Pðkþ1Þ!

!
Xkþ1

i¼1

ikðK1Þkþ1Ki
kþ1Ci 1K

Md

Pi

� �NKMþk

(A8)

where the last equality is obtained using the fact that the

summation of the second term in (A7) is equal to K(kC1)k.

Hence

pðqLÞZfMðqLÞ

Z
N

pðMK1Þ!

XM
iZ1

iMK1ðK1ÞMKi
MCi 1K

MqL

pi

� �NK1

;

(A9)
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Appendix B. Distribution of qL for large qL

From (23)

qL %q1 C
M K1

M
SM

2

necessarily holds where
Pn2

n1
Z
Pn2

jZn1
qj and thus

Prob qL O
d

M

� �
%Prob q1 C

M K1

M
SM

2 O
d

M

� �

for an arbitrary 0!d%p. We will show in the following

that Prob[qLO(d/M)] approaches null faster than O(1/N)

as N increases. Using the joint probability density

function

pðq1; q2;.; qMÞ Z
N

p
/

N KM C1

p
1 K

SM
1

p

� �NKM

;

derived from (19)

Prob q1 C
M K1

M
SM

2 %
d

M

� �

Z

ð
d=M

0

ððd=MK1ÞKðM=MK1Þq1

0

ððd=MK1ÞKðM=MK1Þq1KS2
2

0
/

!

ððd=MK1ÞKMðMK1Þq1KSMK1
2

0
pðq1; q2;.; qMÞdqM /dq1

Z

ð
d=M

0
/

ððd=MK1ÞKðM=MK1Þq1KSMK2
2

0

N

p
/

!
N KM C2

p
1 K

SMK1
1

p

� �NKMC1

dqMK1 /dq1

K

ðd=M

0
/

ððd=MK1ÞKðM=MK1Þq1KSMK2
2

0

N

p
/

!
N KM C2

p
1 K

d Kq1

pðM K1Þ

� �NKMC1

dqMK1 /dq1:

Since the second term has an upper bound

NMK1 1 K
d

pM

� �NKMC1

;

which is o(1/N), it can be neglected in asymptotic

analyses of O(1/N). By recursively integrating the first

term

Prob q1 C
M K1

M
SM

2 %
d

M

� �

Z

ð
d=M

0

N

p
1 K

q1

p

� �NK1

dq1 Co
1

N

� �
Z 1 Co

1

N

� �
:

Hence

Prob qL O
d

M

� �
%o

1

N

� �
:

References

Amari, S. (1993). A universal theorem on learning curves. Neural

Networks, 6, 161–166.

Amari, S., Fujita, N., & Shinomoto, S. (1992). Four types of learning

curves. Neural Computation, 4, 605–618.

Amari, S., & Murata, N. (1993). Statistical theory of learning curves under

entropic loss criterion. Neural Computation, 5, 140–153.

Baum, E. B., & Haussler, D. (1989). What size net gives valid

generalization? Neural Computation, 1, 151–160.

Bennett, K. P., & Bredensteiner, E. J. (2000). Duality and geometry in SVM

classifiers. In P. Langley (Ed.), Proceedings of the seventeenth

international conference on machine learning (pp. 57–64). San

Francisco: Morgan Kaufmann, 57–64.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support

vector machines. Cambridge, UK: Cambridge University Press.

Dietrich, R., Opper, M., & Sompolinsky, H. (1999). Statistical mechanics

of support vector networks. Physical Review Letters, 82(14), 2975–

2978.

Ikeda, K. (2003). Generalization error analysis for polynomial kernel

methods—algebraic geometrical approach. In O. Kaynak, et al. (Ed.),

Artificial neural networks and neural information processing—

ICANN/ICONIP 2003 (pp. 201–208). New York: Springer, 201–208.

Ikeda, K. (2004a). Geometry and learning curves of kernel methods with

polynomial kernels. Systems and Computers in Japan, 35(7), 41–48.

Ikeda, K. (2004b). An asymptotic statistical theory of polynomial kernel

methods. Neural Computation, 16(8), 1705–1719.

Ikeda, K., & Amari, S. (1996). Geometry of admissible parameter region in

neural learning. IEICE Transactions on Fundamentals, E79, 409–414.

Ikeda, K., & Aoishi, T. (2002). Perceptron learning admissible to noise.

Proceedings of forum on information technology, Tokyo, H-9 (in

Japanese).

Opper, M., & Haussler, D. (1991). Calculation of the learning curve of

bayes optimal classification on algorithm for learning a perceptron with

noise. In L. G. Valiant, & M. K. Warmuth (Eds.), Proceedings of the

fourth annual workshop on computational learning theory (pp. 75–87).

San Francisco: Morgan Kaufmann, 75–87.

Opper, M., & Urbanczik, R. (2001). Universal learning curves of support

vector machines. Physical Review Letters, 86(19), 4410–4413.

Risau-Gusman, S., & Gordon, M. B. (2000). Generalization properties of

finite-size polynomial support vector machines. Physical Review E, 62,

7092–7099.

Schölkopf, B., Burges, C., & Smola, A. J. (1998). Advances in kernel

methods: Support vector learning. Cambridge, UK: Cambridge

University Press.

Schölkopf, B., Smola, A., Williamson, R., & Bartlett, P. L. (2000). New

support vector algorithms. Neural Computation, 12(5), 1207–1245.

Smola, A. J., Bartlett, P. L., Schölkopf, B., & Schuurmans, D. (2000).

Advances in large margin classifiers. Cambridge, MA: MIT Press.

Vapnik, V. N. (1995). The nature of statistical learning theory. New York:

Springer.

Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence

of relative frequencies of events to their probabilities. Theory of

Probability and its Applications, 16, 264–280.


	An asymptotic statistical analysis of support vector machines with soft margins
	Introduction
	Geometry of support vector machines
	Geometry of SVMs with soft margins
	Reduced convex hull
	Average generalization error of SVMs
	Hard margins case
	Soft margins case
	Asymptotic analysis

	Computer simulations
	Conclusions and discussions
	Acknowledgements
	Density function of thetaL
	Distribution of thetaL for large thetaL
	References


