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1. The Correlation of Vectors. The Most Predictable Criterion and the Tetrad
Difference. Concepts of correlation and regression may be applied not only to
ordinary one-dimensional variates but also to variates of two or more dimensions.
Marksmen side by side firing simultaneous shots at targets, so that the deviations
are in part due to independent individual errors and in part to common causes
such as wind, provide a familiar introduction to the theory of correlation; but only
the correlation of the horizontal components is ordinarily discussed, whereas the
complex consisting of horizontal and vertical deviations may be even more interest-
ing. The wind at two places may be compared, using both components of the
velocity in each place. A fluctuating vector is thus matched at each moment with
another fluctuating vector. The study of individual differences in mental and
physical traits calls for a detailed study of the relations between sets of correlated
variates. For example the scores on a number of mental tests may be compared
with physical measurements on the same persons. The questions then arise of
determining the number and nature of the independent relations of mind and body
shown by these data to exist, and of extracting from the multiplicity of correlations
in the system suitable characterizations of these independent relations. As another

* Presented before the American Mathematical Society and the Institute of Mathematical Statisticians
at Ann Arbor, September 12, 1935.
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322 Relations between Two Sets of Variates

example, the inheritance of intelligence in rats might be studied by applying not

one but s different mental tests to N mothers and to a daughter of each. Then

s(s; D correlation coefficients could be determined, taking each of the mother-

daughter pairs as one of the N cases. From these it would be possible to obtain
a clearer knowledge as to just what components of mental ability are inherited
than could be obtained from any single test.

Much attention has been given to the effects of the crops of various agricultural
commodities on their respective prices, with a view to obtaining demand curves.
The standard errors associated with such attempts, when calculated, have usually
been found quite excessive. One reason for this unfortunate outcome has been the
large portion of the variance of each commodity price attributable to crops of other
commodities. Thus the consumption of wheat may be related as much to the prices
of potatoes, rye, and barley as to that of wheat. The like is true of supply functions.
It therefore seems appropriate that studies of demand and supply should be made
by groups rather than by single commodities*. This is all the more important in
view of the discovery that demand and supply curves provide altogether inadequate
foundation for the discussion of related commodities, the ignoring of the effects of
which has led to the acceptance as part of classical theory of results which are wrong
not only quantitatively but qualitatively. It is logically as well as empirically
necessary to replace the classical one-commodity type of analysis, relating for
example to the incidence of taxation, utility, and consumers’ surplus, by a simul-
taneous treatment of a multiplicity of commoditiest.

The relations between two sets of variates with which we shall be concerned
are those that remain invariant under internal linear transformations of each set
separately. Such invariants are not affected by rotations of axes in the study of
wind or of hits on a target, or by replacing mental test scores by an equal number
of independently weighted sums of them for comparison with physical measurements.
If measurements such as height to shoulder and difference in height of shoulder
and top of head are replaced by shoulder height and stature, the invariant relations
with other sets of variates will not be affected. In economics there are important
linear transformations corresponding for example to the mixing of different grades
of wheat in varying proportirns}. Both prices and quantities are then transformed
linearly.

In this case, besides the invariants to be discussed in this paper, there will be
others resulting from the fact that the transformation of quantities is not independent
of that of the prices, but is contragredient to it. (Cf. Section 16 below.)

* The only published study known to the writer of groups of commodities for which standard
errors were calculated is the paper of Henry Schultz, ¢ Interrelations of Demand,”” in Journal of Political
Economy, Vol. xt1. pp. 468—512, August, 1933. Some at least of the coefficients obtained are significant.

+ Harold Hotelling, ‘“ Edgeworth’s Taxation Paradox and the Nature of Demand and Supply
Functions” in Journal of Political Economy, Vol. xL. pp. 577—616, October, 1932, and ‘‘ Demand
Functions with Limited Budgets’’ in Econometrica, Vol. 111. pp. 66—78, January, 1935.

1 Harold Hotelling, ** Spaces of Statistics and their Metrization’’ in Science, Vol. Lxviz. pp. 149—150,
February 10, 1928.
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Sets of variates, which may also be regarded as many-dimensional variates, or
as vectors possessed of frequency distributions, have been investigated from several
different standpoints. The work of Gauss on least squares and that of Bravais, Galton,
Pearson, Yule and others on multivariate distributions and multiple correlation are
early examples. In “The Generalization of Student’s Ratio*,” the writer has given
a method of testing in a manner invariant under linear transformations, and with
full statistical efficiency, the significance of sets of meauns, of regression coefficients,
and of differences of means or regression coefficients. A procedure generalizing the
analysis of variance to vectors has been applied to the study of the internal structure
of cells by means of Brownian wovements, for which the vectors representing
displacements in consecutive fifteen-second intervals were compared with their
resultants to demonstrate the presence of invisible obstructions restricting the
movementt. Finally, S. S. Wilks has published important work on relations among
two or more sets of variates which are invariant under internal linear trans-
formations}. Denoting by 4, B and D respectively the determinants of sample
correlations within a set of s variates, within a set of ¢ variates, and in the set
cdnsisting of all these s+ ¢ variates, the distribution of the statistic,

was determined exactly by Wilks under the hypothesis that the distribution is
normal, with no population correlation between any variate in one set and any in
the other. Wilks also found distributions of analogous functions of three or more
sets, and of other related statistics.

The statistic (1'1) is invariant under internal linear transformations of either
set, as will be proved in Section 4. Another example of such a statistic is provided
by the maximum multiple correlation with either set of a linear function of the
other set, which has been the subject of a brief study§. This problem of finding,
not only a best predictor among the linear functions of one set, but at the same
time the function of the other set which it predicts most accurately, will be solved
in Section 3 in a more symmetrical manner. When the influence of these two
linear functions is eliminated by partial correlation, the process may be repeated
with the residuals. In this way we may obtain a sequence of pairs of variates, and
of correlations between them, which in the aggregate will fully characterize the
invariant relations between the sets, in so far as these can be represented by
correlation coefficients. They will be called canonical wariates and canonical
correlations. Every invariant under general linear internal transformations, such
for example as z, will be seen to be a function of the canonical correlations.

¥ Annals of Mathematical Statistics, Vol. 1r. pp. 360—378, August, 1931.

t L. G. M. Baas-Becking, Henriette van de Sande Bakhuyzen, and Harold Hotelling, ¢ The Physical
State of Protoplasm” in Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam,
Second Section, Vol. v. (1928).

1 ¢“Certain Generalizations in the Analysis of Variance’’ in Biometrika, Vol. xx1v. pp. 471—494,
November, 1932.

§ Harold Hotelling, *‘The Most Predictable Criterion’ in Journal of Educational Psychology,
Vol. xxvi. pp. 139—142, February, 1935.
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Observations of the values taken in N cases by the components of two vectors
constitute two matrices, each of N columns. If each vector has s components, then
each matrix has s rows. In this case we may consider the correlation coefficient
between the O'V-rowed determinants in one matrix and the corresponding deter-
minants in the other. Since a linear transformation of the variates in either set
effects a linear transformation of the rows of the matrix of observaticns, which
merely multiplies all these determinants by the same constant, it is evident that
the correlation coefficient thus calculated is invariant in absolute value. We shall
call it the wector correlation or vector correlation coefficient, and denote it by g.
When s=2, if we call the variates of one set z;, z3, and those of the other 3, x4,
and r;; the correlation of z; with «;, then it is easy to deduce with the help of the
theorems stated in Section 2 below that

= BTM TS e, 12).

! V(1 —7r1?) (1 = 73s%) 2
For larger values of s, ¢ will have as its numerator the determinant of correlations of
variates in one set with variates in the other, and as its denominator the geometric
mean of the two determinants of internal correlations. A generalization of ¢ for
sets with unequal numbers of components will be given in Section 4.

Corresponding to the correlation coefficient r between two simple variates,
T. L. Kelley has defined the alienation coefficient as ¥1 —r® The square of the
correlation coefficient between x and y is the fraction of the variance of y attri-
butable to 2, while the square of the alienation coefficient is the fraction independent
of #. If we adopt this apportionment of variance as a basis of generalization, we
shall be consistent in calling ¥z the vector alienation coefficient.

If there exists a linear function of one set equal to a linear function of the
other—if for example #; is identically equal to zs—the expression (1-2) for ¢ reduces
to a partial correlation coefficient. If one set consists of a single variate and the
other of two or more, the vector correlation coincides with the multiple correlation.
If each set contains only one variate, ¢ is the simple correlation between the two.
Thus the vector correlation coefficient provides a generalization of several familiar
concepts.

The numerator of (1:2), known as the tetrad difference or tetrad, has been of
much concern to psychologists. The vanishing in the population of all the tetrads
among a set of tests is a necessary condition for the theory, propounded by Spearman,
that scores on the tests are made up of a component common in varying degrees to
all of them, and of independent components specific to each. The vanishing of some
but not all of the tetrads is a condition for certain variants of the situation*. The
sampling errors of the tetrad have therefore received much attention. In dealing
with them it has been thought necessary to ignore at least three types of error:

(1) The standard error formulae used are only asymptotically valid for very
large samples, with no means of determining how large a sample is necessary.

* Truman L. Kelley, Crossroads in the Mind of Man, Stanford University Press, 1928. This book,
in addition to relevant test data and discussion, contains references to the extensive literature, ¢
standard error formula for the tetrad, and other mathematical developments.
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(2) The assumption is made implicitly that the distribution of the tetrad is
normal, though this cannot possibly be the case, since the range is finite *.

(8) Since the standard error formulae involve unknown population values, these
are in practice replaced by sample values. No limit is known for the errors com-
mitted in this way.

Now it is evident that to test whether the population value of the tetrad is
zero—the only value of interest—is the same thing as to test the vanishing of any
‘multiple of the tetrad by a finite non-vanishing quantity. Wishart+ considered the
tetrad of covariances, which is simply the product of the tetrad of correlations by
the four standard deviations. For this function he found exact values of the mean
and standard error, thus eliminating the first source of error mentioned above.

The exact distribution of ¢ found in Section 8 below may be used to test the
vanishing of the tetrad, eliminating the first and second sources of error. Un-
fortunately even this distribution involves a parameter of the population, one of the
canonical correlations, which must usually be estimated from the sample, introducing
again an error of the third type. However there may be cases in which this one
parameter will be known from theory or from a larger sample.

Now it will be shown that ¢ is the product of the canonical correlations. Hence
at least one of these correlations is zero if the tetrad is. Thus still another test of
the same hypothesis may be made in this way. Now we shall obtain for a canonical
correlation vanishing in the population the extremely simple standard error formula

1 . . . . .
v’ involving no unknown parameter. Thus this test evades errors of the third kind,

but is subject to those of the first two, although the second is somewhat mitigated
by an ultimate approach to normality, since the canonical correlations satisfy the
criterion for approach to normality derived by Doob in the article cited. Further
research is needed to find an exact test involving no unknown parameter. The
question of whether this is possible raises a very fundamental problem in the
theory of statistical inference. We shall, however, find exact distributions appro-
priate for testing a variety of hypotheses.

2. Theorems on Determinants and Matrices. We shall have frequent occasion
to refer to the following well-known theorem, the proofs of which parallel those of
the multiplication theorem for determinants, and which might advantageously be
used in expounding many parts of the theory of statistics:

Given two arrays, each composed of m rows and n columns (m < n). The deter-
manant formed by nwultiplying the rows of one array by those of the other equals the

* The first proof that the distribution of the tetrad approaches normality for large samples was
given by J. L. Doob in an article, ‘‘ The Limiting Distributions of Certain Statistics,”” in the Annals of
Mathematical Statistics, Vol. vi. pp. 160—169 (September, 1935). The proof is applicable only if the
population value of z is different from unity, i.e. if the sets x;, z, and a,, x, are not completely
independent. If they are completely independent, the limiting distribution is of the form 4 ce~¢'t!dt, as
Doob showed. What the distribution of the tetrad is for any finite number of cases no one knows.

1 ¢ Sampling Errors in the Theory of Two Factors’ in British Journal of Psychology, Vol. xix.
pp. 180—187 (1928).
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sum of the products of the m-rowed determinants in the first array by the corresponding
m-rowed determinants in the second.

When the two arrays are identical, we have the corollary that the symmetrical
determinant of the products of rows by rows of an array of m rows and n columns

(m < n) equals the sum of the squares of the m-rowed determinants in the array, and
18 therefore not negative.

3. Canonical Variates and Canonical Correlations. Applications to Algebra and
Geometry. If @y, xy, ... are variates having zero expectations and finite covariances,
we denote these covariances by

Oap = Ez, 24,
where E' stands for the mathematical expectation of the quantity following. If new
variates @', 2, ... are introduced as linear functions of the old, such that

’
2, = 2Cyea,
a

then the covariances of the new variates are expressed in terms of those of the old
by the equations
0'15' = ZZCY‘,Cap OgB  veeetetinnianinineeiierieeanns (31),
af

obtained by substituting the equations above directly in the definition
oy = Lz, ),
and taking the expectation term by term.

Now (31) gives also the formula for the transformation of the coefficients of a
quadratic form XXe.s2,2s when the variables are subjected to a linear trans-
formation. Hence the problem of standardizing the covariances among a set
of variates by linear transformations is algebraically equivalent to the canonical
reduction of a quadratic form. The transformation of a quadratic form into a
sum of squares corresponds to replacing a set of variates by uncorrelated com-
ponents. It is to be observed that the fundamental nature of covariances implies
that XXo.s2.2s is a positive definite quadratic form, and that only real trans-
formations are relevant to statistical problems.

Considering two sets of variates @, ..., @, and @1, ..., @y, we shall denote
the covariauces, in the sense of expectations of products, by o.s, 0u;, and o5, using
Greek subscripts for the indices 1, 2, ..., s and Latin subscripts for s+1, ..., s +¢.
Determination of invariant relations between the two sets by means of the cor-
relations or covariances among the s+ ¢ variates is associated with the algebraic
problem, which appears to be new, of determining the invariants of the system
counsisting of two positive definite quadratic forms

220 Tallpg, XX0HT;T;,
af iy

in two separate sets of variables, and of a bilinear form
Eza-,,ix,,x,;
al

in both sets, under real linear non-singular transformations of the two sets
separately.
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Sample covariances are also transformed by the formula (31). The ensuing
analysis might therefore equally well be carried out for a sample instead of for
the population. Correlations might be used instead of covariances, either for the
sample or for the population, by introducing appropriate factors, or by assuming
the standard deviations to be unity.

We shall assume that there is no fixed linear relation among the variates, so
that the determinant of their covariances or correlations is not zero. This implies
that there is no fixed linear relation among any subset of them; consequently
every principal minor of the determinant of s +¢ rows is different from zero.

If we consider a function u of the variates in the first set and a function v
of those in the second, such that

U=, V= 2b;x;,
i

a

the conditions 220pt.ap=1, ZZa;bbi=1............ (32)

are equivalent to requiring the standard deviations of » and v to be unity. The
correlation of v with v is then

R=550418uD; v (3:3).

ar

If » and v are chosen so that this correlation is a maximum, the coefficients a,
and b; will satisfy the equations obtained by differentiating

S804 @by — $ASS0aptats — 3 a0, bib;,
na,mely EO‘,ibi - AEO’EB ag = L N (3'4),
g B

20ai0a — p0Gb; = 0. (3'5).
a J

Here A and p are Lagrange multipliers. Their interpretation will be evident upon
multiplying (34) by a. and summing with respect to ¢, then multiplying (3'5) by
b; and summing with respect to 5. With (3:2) and (3'3), this process gives

A=u=R.

The s+t homogeneous linear equations (34) and (3:5) in the s +¢ unknowns
a, and b; will determine variates » and v making R a maximum, a minimum, or
otherwise stationary, if their determinant vanishes. Since A = u, this condition is

—AOY e = ATy O gy everenveeinnnes 1, s+t
— Ao — Ao, O a
HRED ss 8,8 1 veererereneens 8, 8+t
’ =0 .. (3'6)
Ogt1,1 ++- Ogt1,s  — MOy, b1 oo0 — >"0's+1, s+t
Ostt,1 Ogttys — Mghtgh oo = AMOgtg, oty
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This symmetrical determinant is the discriminant of a quadratic form ¢ — Ay,

where
b =22204i%.2;, Y =2X0p2.2p + K025,
ai B i

Here ¥ is positive definite because it is the sum of two positive definite quadratic
forms. Consequently* all the roots of (3'6) are real. Moreover the elementary
divisors are all of the first degreet. This means that the matrix of the determinant
in (3'6) is reducible, by transformations which do not affect either its rank or its
linear factors, to a matrix having zeros everywhere except in the principal diagonal,
while the elements in this diagonal are polynomials

Ey(N), Ea(\), ..., Eye(N),

none of which contains any linear factor of the form A —p raised to a degree
higher than the first. Therefore, if a simple root of (3:6) is substituted for A, the
rank is s +¢ —1; but substitution of a root of multiplicity m for A makes the rank
s+ t—m. Consequently if a simple root is substituted for A and u in (3'4) and
(3'5) these equations will determine values of ay, as, ..., @, bsy1, ..., Dsye, uniquely
except for constant factors whose absolute values are determinable from (3-2). Not
all these quantities are zero; from this fact, and the form of (3-4) and (8'5), it is
evident that at least one a, and at least one b; differ from zero, provided the value
put for A is not zero. The variates u and v will then be fully determinate except
that they may be replaced by the pair —u, —v». But for a root of multiplicity m
there will be m linearly independent solutions instead of one in a complete set
of solutions. From these may be obtained m different pairs of variates  and v.

The coefficient of the highest power of A in (8'6) is the product of two principal
minors, both of which differ from zero because the variates have been assumed
algebraically independent. The equation is therefore of degree s +¢. We assume
as a mere matter of notation, if s#¢, that s< ¢. Then of the s+t roots at least
t —s vanish; for the coefficients of A**-1 and lower powers of A are sums of
principal minors of 2s + 1 or more rows, in which A is replaced by zero, and every
such minor vanishes, as can be seen by a Laplace expansion. Also, the sign of A
may be changed in (3'6) without changing the equation, for this may be accom-
plished by multiplying each of the first s rows and last ¢ columns by — 1. Therefore
the negative of every root is also a root. The s+ ¢ — (¢ —s) = 25 roots that do not
necessarily vanish consist therefore of s positive or zero roots pi, pa, ..., ps, and
of the negatives of these roots. These s roots which are positive or zero we shall
call the canonical correlations between the sets of variates; the corresponding
linear functions u, v whose coefficients satisfy (3-2), (3'4) and (3'5) we call canonical
variates}. It is clear that every canonical correlation is the correlation coefficient
between a pair of canonical variates. Hence no canonical correlation can exceed
unity. The greatest canonical correlation is the maximum multiple correlation

* Maxime Bdcher, Introduction to Higher Algebra, New York, 1931, p. 170, Theorem 1.

+ Bocher, p. 305, Theorem 4; p. 267, Theorem 2; p. 271, Definition 3.

1 The word ¢ canonical’’ is used in the algebraic theory of invariants with a meaning consistent
with that of this paper.
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with either set of a disposable linear function of the other set. If u, v are canonical
variates corresponding to p,, then the pair u, —v or v, —u is associated with the
root — p,.

If a pair of canonical variates corresponding to a root p, is

Uy = Dllay@a, UVy= Zibi.,x,- ......................... 37,
the coefficients must satisfy (3:4) and (8'5), so that
%aai biy = p,Zﬁla,,, BBy oveeninen creieeineninns (38),
%om»a..,, = py ?aﬁ biy ereiriii (39).
Also let Us = Eaps‘%g, Vs = %biswi ........................ (8'10)

be canonical variates associated with a canonical correlation p;. Among the four
variates (3:7) and (8:10) there are six correlations. Apart from p, and ps these are
obviously

Euyus = ZX0.p0py 005, Eu,vs = 220,00y bis}

E"Uy Uy = ZZO',,,; bi*/ Qas, Ev., Vs = ZZcri,- b,;., bjs

We shall prove that the last four are all zero. Multiply (3:8) by a.s-and sum with
respect to @. The result, with the help of (3:11), may be written

By us=p, Euyus ...oooevviiiiiiiiiiinnn, (312).

Multiplying (8-9) by b;; and summing with respect to 1, we get
Buyws=p,Ev,v5 oo (3-13).

Interchanging o and 8 in this and then using (3'12), we obtain
pyBuyus = ps Eoyvs..oooooiviiii (3:14).

Again interchanging « and 8, we have
ps Buyus = py Ev,vs.

If p,2+# ps?, the last two equations show that Bu,us = Ev,vs=0. Hence, by (3:12)
and (313), Ev,us and Eu,vs vanish. Thus all the correlations among canonical
variates are zero except those between the canonical variates associated with the
same canonical correlation.

If pa is a root of multiplicity m, it is possible by well-known processes to obtain
m solutions of the linear equations such that, if

A1y, oo Ogyn Dyyrys ooy boyrys
1, ooy Ogs,  boprs, oo, bgyes,
are any two of these solutions, they will satisfy the orthogonality condition
Zllay Aas + Ei]bi, bis=0 .ovrrii (8:15).

There is no loss of generality in supposing that each of the original variates was
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uncorrelated with the others in the same set and had unit variance. In this case
(3:15) is equivalent to
Eu,us + Ev,vs =0,
where u,, vy, u5, v are given by (8'7) and (8'10). For this case of equal roots we
have also from (3:14),
P (Buyus — Ev,vs) = 0.

If p. #0, the last two equations show that Bu,us = Ev,v; =0, and then from (812)
and (3:13) we have that Ev,us = Eu,v;=0. These correlations also vanish if p,=0,
for then the right-hand members of (3-8) and (3:9) vanish, leaving two distinct sets
of equations in disjunct sets of unknowns. The solutions may therefore be chosen
so that the two sums in (3:15) vanish separately.

A double zero root determines uniquely, if s=%, a pair of canonical variates.
If s<t, such a root determines a canonical variate for the less numerous set, and
leaves ¢ —s degrees of freedom for the choice of the other.

The reduction of our sets of variates to canonical form may be completed by
the choice of new variates vy, ¥5,q, ..., ¥; as linear functions of the second and
more numerous set (unless the numbers in the two sets are equal), uncorrelated
with each other and with the canonical variates v, previously determined, and having
unit variance. This may be done in infinitely many ways, as is well known. These
variates will also be uncorrelated with the canonical variates ,. Indeed, if

V= Ebjkd?j
is one of them, its correlation with u, is, by (3'7) and (3:9),
E’u, Vp = 220',1; Aay l)j]c = p.,ZEaij bi., bj}c =Py E’Uy Uk,
which vanishes because v;, was defined to be uncorrelated with v,.

The normal form of two sets of variates under internal linear transformations
is thus found to consist of linear functions u,, us, ..., 4, of one set, and v,, vs, ..., ¥,
of the other, such that all the correlations among these linear functions are zero,
except that the correlation of u, with v, is a positive number p, (y =1, 2, ..., s).
Therefore the only tnvariants of the system under internal linear transformations
are py, pg, .., Ps, and functions of these quantities.

The solution of the algebraic problem mentioned at the beginning of this
section, by steps exactly parallel to those just taken with the statistical problem,
is the following:

The positive definite quadratic forms XXo.pz.as, and XZo;a;x;, and the
bilinear form XXo.zex; with real coefficients, where the Latin subscripts are
summed from 1 to s and the Greek subscripts from s+1 to s+t, and s<t, may
be reduced by a real linear transformation of =z, ..., z, and a real linear trans-
Sormation of @y, ..., T4y, stmultaneously to the respective forms x®+ ...+ =2
Bep P+ o+ 2oy and py @y Ty + Pa®a oy + ... + Ty, A fundamental system of
invariants under such transformations consists of py, ..., ps-

This algebraic theorem holds also if the quadratic forms are not restricted
to be positive definite, provided (3:6) has no multiple roots and the forms are
non-singular.
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The normalization process we have defined may also be carried out for a sample,
yielding canonical correlations 7y, 7y, ..., 7y, which may be regarded as estimates
of py, pg, ..., ps, and associated canonical variates. With sampling problems raised
in this way we shall largely be concerned in the remainder of this paper.

A further application is to geometry. In a space of N dimensions a sample
of N values of a variate may be represented by a point whose coordinates are the
observed values. The sample correlation between two variates is the cosine of
the angle between lines drawn from the origin to the representing points, with the
proviso, since deviations from means are used in the expression for a correlation,
that the sum of all the coordinates of each point be zero. A sample of s+¢
variates determines a flat space of s and one of ¢ dimensiouns, intersecting at the
origin, and containing the points representing the two sets of variates. In typical
cases these two flat spaces do not intersect except at this one point. A complete
set of metrical invariants of a pair of flat spaces is easily seen from the foregoing
analysis to consist of s angles whose cosines are r;, ..., 7. Indeed, like all cor-
relations, they are invariant under rotations of the N-space about the origin, and
they do not depend on the particular points used to define the two flat spaces.
Each of these invariants is the angle between a line in one flat space and a line
in the other. One of the invariants is the minimum angle of this kind, and the
others are in a sense stationary. The condition that the two flat spaces intersect
in a line is that one of the invariant quantities »y, ..., », be unity. They intersect in
a plane if two of these quantities equal unity. For two planes through a point
in space of four or more dimensions, there will be two invariants ry, 7,, of which
one is the cosine of the minimum angle. If r, =r,, the planes are isocline. Every
line in cach plane then makes the minimum angle with some line in the other.
If 7, =7, =0, the planes are completely perpendicular; every line in one plane is
then perpendicular to every line in the other. If one of these invariants is zero
and the other is not, the planes are semi-perpendicular; every line in each plane
is perpendicular to a certain line in the other.

The determinant of the correlations among canonical variates is

10..0 p0 ..0..0

=(1=p)A=p22) cc. A =p2) e (3:16).
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The rank of the matrix

pg,g.‘.l .......... P8,8+t
of correlations between the two sets is invariant under non-singular linear trans-

formations of either set. Transformation to canonical variates reduces this
matrix to

P1 0o . 0 ........ 0
0 P2 . 0 ......... 0
00 ... py evree. 0

The rank is therefore the number of canonical correlations that do not vanish.
This is the number of independent components common to the two sets. In the
parlance of mental testing, the number of “common factors” of two sets of tests
(e.g. mental and physical, or mathematical and linguistic tests) is the number
of non-vanishing canonical correlations.

4. Vector Correlation and Alienation Coefficients. In terms of the covariances
among the variates in the two sets x,, ..., #, and #,,,, ..., %44, we define the
following determinants, maintaining the convention that Greek subscripts take
values from 1 to s, and Latin subscripts take values from s+ 1 to s+¢. It will be
assumed throughout that st A is the determinant of the covariances among
the variates in the first set, arranged in order: that is, the element in the ath row
and Bth column of 4 is g,s. B is the determinant of the covariances among
variates in the second set, likewise ordered. D is the determinant of s+t rows
containing in order all the covariances among all the variates of both sets. C is
obtained from D by replacing the covariances among the variates of the first set,
including their variances, by zeros. Symbolically,

Ad=|owp|, B=|oy|, C=| 0

Suppose now that new variates ay’, ..., x, are defined in terms of the old
variates in the first set by the s equations

2y = 2Cyas.

The new covariances are then expressed in terms of the old by (3:1). The deter-
minant of these new covariances, which we shall denote by A’, may by (3:1) and
the multiplication theorem of determinants be expressed as the product of three
determinants, of which two equal the determinant ¢ =|cya| of the coefficients of
the transformation, while the third is 4. If the variates of the second set are
subjected to a transformation of determinant d, the determinants of covariances

among the new variates analogous to those defined above are readily seen in this
way to equal
A'=¢*4, B'=d*B, ('=c*d*C, D' =cd*D ............ (41).
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Thus 4, B, C, D are relative tnvariants under internal transformations of the two
sets of variates.

The ratios QR*=

& AII);C and Z -=A£B- ........................
we shall call respectively the squares of the vector correlation coefficient or vector
correlation, and of the vector alienation coefficient. It is evident that both are
absolute invariants under internal transformations of the two sets, since their
values computed from transformed variates have numerators and denominators
multiplied by the same factor ¢®d? in accordance with (4-1).

The notation just used is appropriate to a population, but the same definitions
and reasoning may be applied to a sample. We denote by ¢* and z the same
functions of the sample covariances that @* and Z, respectively, have been defined
to be of the population covariances.

A particularly simple linear transformation consists of dividing each variate
by its standard deviation. The covariances among the new variates are then the
same as their correlations, which are also the .correlations among the old variates.
Hence, in the definitions of the vector correlation and alienation coefficients, the
covariances may be replaced by the correlations. For example, if s =¢=2, the
squared vector correlation in a sample may be written

0 0 T3 T
0 0 Tog  To4
731 732 1 T34
gt = - T : = (1 7‘242— T r23)22 ......... (4°3).
1 T12 1 raa| (1 —712%) (1 — 7ag®)
712 1] T34 1

The vector correlation coefficient will always be taken as the positive square
root of ¢* or of @* (which are seen below to be positive) when s < ¢, and usually
also when s=¢. However, if in accordance with (4'3) we write

= BT TATE e, (4-4)
V(1= 713") (1 = 73s®)
it is evident that ¢ may be positive for some samples of a particular set of variates,
and negative for other samples. It may sometimes be advantageous, as in testing
whether two samples arose from the same population, to retain the sign of ¢ for
each sample, since this provides evidence in addition to that given by the absolute
value of ¢q. But unless otherwise stated we shall always regard ¢ as the positive
root of g% Likewise, @, +/z and /Z will denote the positive roots unless otherwise
specifically indicated in each case. A transformation of either set will reverse the
sign of the algebraic expression (4-4) if the determinant of the transformation is
negative. This will be true of a simple interchange of two variates; for example,
2y = &3, 22’ = o has the determinant — 1. On the other hand, the sign is conserved
if the determinant of the transformation is positive. Such considerations apply
whenever s =1.

q
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Since the vector correlation and alienation coefficients are invariants, they
may be computed on the assumption that the variates are canonical. In this case
A=B=1, and D is given by (316). To obtain C we replace the first s 1’s in
the principal diagonal of (3:16) by 0’s. It then follows that '

C=(=1yplpst ... pi
This confirms that the value of @* given in (4-2) is positive. In this way the vector

correlation and alienation coefficients are expressible in terms of the canonical
correlations by the equations

Q=2ppy...psy Z=(1=pHA—p2)...1=p2) ......... (45),
g=txmry...r, z2=1=-r?)A=r2...QA=r2 ......... (4-6).

From these results it is obvious that both the vector correlation and vector
alienation coefficients are confined to values not exceeding unity. Also Z and 2z
are necessarily positive, except that they vanish if, and only if, all the variates in
one set are linear functions of those in the other.

Since the denominator of (44) is obviously less than unity, and since we have
Just shown that ¢ <1, the tetrad must be still less. This simple proof that the
tetrad is between — 1 and + 1 shows the falsity of the idea that the range of
the tetrad is from —2 to + 2, which has gained some currency. An equivalent
proof in vector notation was communicated to the writer by E. B. Wilson.

The only case in which Z can attain its maximum value unity is that in which
all the canonical correlations vanish. In this case no variate in either set is
correlated with any variate in the other, so that the two sets are completely
independent, at least if the distribution is normal. Moreover, @ =0. On the other
hand, the only case in which @ can be unity is that in which all the canonical
correlations are unity. In this event, Z =0; also, the variates in the first set are
linear functions of those in the second. Thus either z, 1~ g, or 1 —¢® might be
used as an index of independence, while we might use ¢, ¢® or 1 —z as a measure
of relationship between the two sets. The work of Wilks alluded to in Section 1
provides an exact distribution of z on the hypothesis of complete independence, a
distribution which may thus be used to test this hypothesis.

If we regard the elements of 4, B and C as sample covariances, we have in case
s=t a simple interpretation of ¢. Cnsider the two matrices of observations on the
two sets of variates in IV individuals, in which each row corresponds to a variate
and each column to an individual observed. From Section 2 it is evident that the
square of the sum of the products of corresponding s-rowed determinants in the two
matrices is (— 1)* N2 C; also that the sums of squares of the s-rowed determinants
in the two matrices are N<4 and N*B. Therefore ¢ is simply the product-moment
correlation coefficient between corresponding s-rowed determinants.

The generalized variance of a set of variates may be defined as the determinant
of their ordered covariances, such as 4 or B. Let &, &, ..., & be estimates
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respectively of @y, @,, ..., z; obtained from @, ..., Zsy by least squares, and let the
regression equations be

The appropriateness of @ as.a generalization of the correlation coefficient, and of ¥/ Z
as a generalization of the alienation coefficient, will be apparent from the following
theorem:

The ratio of the generalized variance of &, ..., & to that of x, ..., @, is Q.
The ratio of the generalized variance of =, —&,, Ty — &, ..., @, — &, to that of
&y, ..., g 18 2.

This theorem is expressed in terms of the population, but an exactly parallel
one holds for a sample.

Proof: If @y, ..., z, be subjected to a linear transformation of determinant c,
and if &, ..., & be subjected to the same transformation (i.e. a transformation with
the sume coefficients), then «; —§,, ..., z,— &, will also be subjected to this trans-
formation. The generalized variances of all three of these sets of variates will be
multiplied by the same constant ¢?, just as in (4'1) we found that A’ = c*4. Ratios
among the three determinants will therefore be absolutely invariant; consequently
our theorem is true if it is true when the original variates are canonical. Suppose,
then, that this is the case. Since each canonical variate is correlated with only one
of the other set, the regression equations (4'7) reduce simply to

o= pPatars (@=1,...,3).

Since the variance of x,4; is unity, that of £, is p.?; that of the deviation z, — &,
is 1 —p,% Since the canonical variates #,, ..., #, are mutally uncorrelated, the same
is true of the &,, and also of the x, — ¢,. The generalized variance of the canonical
variates is unity; that of the £, is the product of the elements in its principal
diagonal, namely p,%ps®...p.2; and the generalized variance of the a, —§&, is
1 =pi?)...(1 —p2). In view of (45), this proves the theoremn.

A further property of the vector correlation is obvious from the final paragraph
of Section 3:

A necessary and sufficient condition that the number of components in an un-
correlated set of components common to two sets of variates be less than the number
of variates in either set vs that the vector correlation be zero.

When s =2 the canonical correlations not only determine the vector correlation
and alienation coefficients but are determined by them. If as usual we take
q positive, (4'6) becomes ¢ =173, z = (1 —r?) (1 —r5?%), whence

ri+rld=1—z4¢% rirlf=¢® .l (4°8).

Solving, and denoting the greater canonical correlation by 71, we have
r=3% [«/(1 +g)P-z+ N/(l—q)z—z]l
ro=13% [V(l +9P¢—2z-V(1 ——q)z-z]}
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Since the canonical correlations are real, (r, — r5)? is positive; therefore
2<(L=q) i, (4°10).

In like manner, the vector correlation and alienation coefficients in the population
are subject not only to the inequalities, 0 < @*< 1, 0 < Z <1, but also, when s =2, to

Z<(1-Q)2
These inequalities become equalities when the roots are equal.

The fundamental equation (3'6), regarded as an equation in A% has as roots the
squares of the canonical correlations. Hence, by (4'8), it reduces it to the form

M_(Q=z4+¢)R+¢?=0 cooviviiiininninnn, (411),
where s = 2.

5. Standard Errors. The canonical correlations and the coefficients of the
canonical variates are defined in Section 3 in such a way that they are continuous
functions of the covariances, with continuous derivatives of all orders, except for
certain sets of values corresponding to multiple or zero roots, within the domain of
variation for which the covariances are the coefficients of a positive definite quadratic
form. This is true for the canonical reduction of a sample as well as for that of
a population. The probability that a random sample from a continuous distribution
will yield multiple roots is zero; and sample covariances must always be the
coefficients of a positive definite form.

We shall in this section derive asymptotic standard errors, variances and co-
variances for the canonical correlations on the assumption that those in the
population are unequal, and that the population has the multiple normal distribution.
From these we shall derive standard errors for the vector correlation and alienation
coefficients ¢ and z. The deviation of sample from population values in these as in
most cases have variances of order n~1, and distributions approaching normality of

form as n increases*®.
Let 3, ..., , be a normally distributed set of variates of zero means and

covarlances
oy=FEmw;. ... (51).

For a sample of N in which #; is the value of x; observed in the fth individual,
the sample covariance of z; and «; is
_ X (@i — &) (w39 — T5) ey, - N&z,
S = N—-1 = N_1 e

where Z; and 7, are the sample meaus. To simplify the later work, we introduce
the pseudo-observations, ;/, defined in terms of the observations by the equations

N
w,-,' = Zl Crgig covveeresntosnatoncsneacsnscnnses (5'3),
g=

* For a proof of approach to normality for a general class of statistics including those with which
we deal, of. Doob, op. cit.
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where the quantities ¢s, independent of ¢ and therefore the same for all the
variates x;, are the coefficients of an orthogonal transformation, such that

CNy =CNg = «.. =CNN = ;\/1\’ ........................ (5'4‘).

Since the transformation is orthogonal we must have

SO =gy ereee e (5°5),

where 3, is the Kronecker delta, equal to unity if f=g, but to zero if f#g¢. The
coefficients c;, may be chosen in an infinite variety of ways consistently with these
requirements, but will be held fixed throughout the discussion. Since linear
functions of normally distributed variates are normally distributed, the pseudo-
observations are normally distributed. Their population means are, from (5:3),

Ez;/ =Xc;, Ex;, =0,

since the original variates were assumed to have zero means. Also, since the
expectation of the product of independent variates is zero, and since the different
individuals in a sample are assumed independent, so that, by (5:1),

B i = Opp 0 e, (5°6),
we have, from (5°8), (5'6) and (5°5),

!’ ’ Yo . 3
Bz, = Zh%cfh Cor Bz 2y

= X305, €y O 04
L N (57).
= 201, Cop, 0y
3
=98, ]
From (5'4) and (5°8) it is clear that
Za:,-y
N =L = VNT, oo, 5°8).
ZiN 4/N 7 ( )

The equations (5:3) may, on account of their orthogonality, be solved in the form

Tip =+ oy,
Therefore, by (55),

’o IR I B
§w,.fw,- = XXZC,sCrr sy’ Win’ = BB @iy wyy = By, xy, .
g

Substituting this result and (5-8) in (5:2), we find that the firal term of the sum
cancels out. Introducing therefore the symbol 8 for summation from 1 to N —1
with respect to the second subscript, and putting also

N=N =1 s (59),
we have the compact result
=S (510).

S =
(2 n

Biometrika xxviix 22
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Since the pseudo-observations are normally distributed with the covariances (5°7)
and zero means, they have exactly the same distribution as the observations in
a random sample of n from the original population. The equivalence of the mean
product (510) with the sample covariance (5:2) establishes the important principle
that the distribution of covariances in a sample of n+1 is exactly the same as the
distribution of mean products in a sample of n, if the parent population is normally
distributed about zero means. Use of this principle will considerably simplify the
discussions of sampling.

An important extension of this consideration lies in the use of deviations, not
merely from sample means, but from regression equations based on other variates.
In such cases the number of degrees of freedom n to be used is the difference
between the sample number and the number of constants in each of the regression
equations, which number must be the same for all the deviations. The estimate of
covariance of deviations in the ¢th and jth variates to be used is then the sum of the
products of corresponding deviations, divided by n. This may also be regarded as
the mean product of the values of #; and «;in n pseudo-observations, as above,
without elimination of the means or of the extraneous variates. The sampling
distributions with which we shall be concerned will all be expressed in terms of the
number of degrees of freedom n, rather than in terms of the number of observa-
tions N. "This will permit immediately of the extension, which is equivalent to
replacing all the correlations, in terms of which our statistics may be defined, by
partial correlations representing the elimination of a particular set of variates, the
same in all cases.

A variance is of course the covariance of a variate with itself, so that this whole
discussior of covariances is equally applicable to variances.

The characteristic function of a multiple normal distribution with zero means is
well known to be

M (h,ta, ...) = Ee¥i%i = ¢X2oijtiti2,
The moments of the distribution are the derivatives of the characteristic function,
evaluated for ¢, =#3=...=0. From the fourth derivative with respect to ¢;, ¢;, t;
and ¢,, it is easy to show in this way that

E2;2;81%=04;01m + CunOik + O Oimevercnciennininnn, (5°11).
From (5'10) we have
1
Esijskm = 7_),_2 SSEwi,'x”'wkf'xm,' ..................... (5'12).
Now if f+g, , ,
Exy' 2, 01 Bms’ = (B’ 255" ) (B1f T ) = 01O v vvvevn. (5°13),

since the expectation of the product of independent quantities is the product of
their expectations. Of the n? terms in the double sum in (5:12), n* —n are equal
to (513). The remaining n terms are those for which f=g, and each of them
equals (5:11). Hence

1 .
Esi;Stm= 040 1m + p (OimOix + 015 Osm).

Inasmuch as Esy=o0y,
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we have, if we put doy; = 85— 0y,

for the deviation of sample from population value, that the sampling covariance of

two covariances is
Edo;jdoy, = Es;Sim — 0ii0km,

whence Edo;doy, = }z (Oi1Oim F CimOik) wevenennenaraneannnn (5°14).

This is a fundamental formula from which may be derived directly a number of
more familiar special cases. For example, to obtain the variance of a variance,
merely put ¢ =j=k =m, which gives

20,2
05 = K (do;;)* = 7:'2 .

Returning from these general considerations to the problem of canonical
correlations, we recall from (3-2) and (3:3) that for any particular canonical cor-
relation py,

X0aptatg=1, ZZo;bb;=1, p1=2ZT0e;aabs........... (5:15),
where ¢ and B are summed from 1 to s, and ¢ and j from s+ 1 tc s+t Any
particular set of sampling errors do 43 in the covariances determines a corresponding
set of sampling errors in the @, and b, and in p;, for these quantities are definite
analytic functions of the covariances except when p; is a multiple or zero root of
(36), cases which we now exclude from consideration. In terms of the derivatives
of these functions we define

da. =25 2% do,u. db=%

aO‘AB

aO’ 'AB

dop, dpi=3% P do,p (516),
aO’AB

where doyp=s4p — 045, and the summations are over all values of A4 and B from
1 to s+¢. Then differentiating (5:15) we have

zz (20’¢ﬁ (478 daﬁ + a, aB do’aB) = 0, ZE (2O'ubz db, + bzbjdo'u) = 0, (5‘17)
dp1 =25 (00;Uedb; + 0o;b;dta + aab;dos;) S
Let us now suppose that the variates are in the population canonical. This
assumption does not entail any loss of generality as regards p,, since p; is an
invariant under transformations of the variates of either set. Since a@, is the
coefficient of «, in the expression for one of the canonical variates, which we take
to be 21, we have in the population a; =1, az=a3=... =a,=0. In the same way,
bsy1=1, bya=...=by,;=0.
Also, since the covariances among canonical variates are the elements of the
determinant in (3:16), we have
Oag = 843, Oy = 8“, Og; = 8¢+3’ iPa  coiieiiiiiiiiiiia (5'18),

the Kronecker deltas being equal to unity if the two subscripts are equal, and
otherwise vanishing. When these special values of the a’s, b’s and o’s are substi-
tuted in (5°17) most of the terms drop out, leaving the simple equations

2day + doyy =0,  2dbgiy +dogyy, g1 = O,}

dp1=p1dbsy1 + prday + doy, 411
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Substituting from the first two in the third of these equations, we get

dp1 = d01,3+1 — %pl (dall + d08+1’ 3+1) .................. (5'20).
For any other simple root p, we have in the same way
dpz = dO'z, s+2 % P2 (dagz + das+2’ s+2) .................. (5'21)

Squaring (520), taking the expectation, using the fundamental formula (5'14), and
finally substituting the canonical values (518), we have
nE (dp1)? = 0110511, 541 + 01,5412 — P1 (201101, 541 + 20541, 541 01, 541)
+1p:? (2001% + 401 411 + 20541, 411%)

(522).
=1+p® —P1(2P1 +2p1) + 1 p1? (2 + 4ps® + 2)
=(1-ps?
Treating the product of (5:20) and (5°21) in the same way we obtain
Edpidps=0 ...ccccoviiiiiiiiiiiiiiiiiii. (5:23).

A sample canonical correlation 7, may be expanded about p; in a Taylor series

of the form
82p 1

aO’ABaUCD

rn—p1= dpl B e (5'25).

The expectation of the product of any number of the sampling deviations do 3 is
a fixed function of the o’s divided by a power of n whose exponent increases with
the number of the quantities do,p in the product. Since Edo,z=0, we have from
(5-24) and (5°14) that E (1, — p1) is of order n=2. Hence squar(li]g (5 20) and using

- p1 %)?

= dO'AB 110’(;1)‘*‘ ...... (524‘),

or, by the last of (5:16),

(522), we find that the samplmg variance of 7y is given by ~———= , apart from

terms of higher order in n~L If by the standard error of -, we understand the
leading term in the asymptotic expansion of the square root of the variance, we have
for this standard error

It is remarkable that this standard error of a canonical correlation is of exactly the
same form as that of a prodnct-moment correlation coefficient calculated directly
from data, at least so far as the leading term is concerned.

The covariance of two statistics or their correlation would ordinarily be of
order n~1; but from (5:23) it appears that the covariance of 7, and 7y is of order n=2
at least. All these results hold as between any pair of simple non-vanishing roots.
To summarize:

Let py, ps, ..., pp be any set of simple non-vanishing roots of (3:6). For sufficiently
large samples these will be approximated by certain of the canonical correlations
T1, Ty, «.ey Tp Of the samples in such a way that, when r,—py is divided by the
standard error



HarorLp HoTELLING 341

the resulting variates have a distribution which, as n increases, approaches the normal
distribution of p independent variates of zero means and unit standard deviations.

For small samples there will be ambiguities as to which root of the determinantal
equation for the sample is to be regarded as approximating a particular canonical
correlation of the population. As n increases, the sample roots will separately
cluster more and more definitely about individual population roots.

If a canonical correlation p, is zero, and if s=¢, the foregoing result is
applicable with the qualification that sample values ry approximating p, must not
all be taken positive, but must be assigned positive and negative values with equal
probabilities. Alternatively, if we insist on taking all the sample canonical correla-
tions as positive, the distribution will be that of absolute values of a normally
distributed variate.

To prove this, suppose that the determinantal equation has zero as a double
root. For sample covariances sufficiently near those in the population, there will
be a root 7 close to zero, which will be very near the value of A obtained by
dropping from the equation all but the term in A% and that independent of A. The
latter is for s=¢ a perfect square, and the former does not vanish, since the zero
root is only a double one. Hence r is the ratio of a polynomial in the s s to
a non-vanishing regular function in the neighbourhood. This means that the
differential method applicable to non-vanishing roots is also valid here, and that,
since the derivatives are continuous, (5:27) holds even when p, = 0.

Since a tetrad difference is proportional to a vector correlation, which is the
product of the canonical correlations, the question whether the tetrad differs
significantly from zero is equivalent to the question whether a canonical correlation
1s significantly different from zero. This may be tested by means of the standard

error (5'27), which reduces in this case to in . Since this is independent of unknown

parameters, we have here a method of meeting the third of the difficulties mentioned
in Section 1 in connection with testing the significance of the tetrad.

For s =2, a zero root is of multiplicity ¢ at least. From the final result in § 9
below it may be deduced that if zero is a root of multiplicity exactly ¢, if » is the
corresponding sample canonical correlation, and if s =2, then nr? has the y? distri-
bution with ¢—1 degrees of freedom. This provides a means of testing the
significance of a sample canonical correlation in all cases in which s = 2.

We shall conclude this section by deriving standard error formulae for the
vector correlation and vector alienation coefficients, assuming the canonical correla-
tions in the population all distinct. Differentiating (4-5) and supposing all canonical
correlations positive we have

Q=3 qz— _ 275 PPy
Py L—py

Taking the expectations of the squares and products of these expressions and using
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(522) and (5'23), we obtain for the variances and covariance, apart from terms of

higher order in 2%,
=Q \/ ) (1 o =97 \/Pf‘*'_i'.&f
n = 1 ’ z n b

EdQdZ=-~ 2025 (L= p2) v, (5:28).

For the case s =2 these formulae reduce with the help of (45) to
— 02\ _ 2 _ 2
o_qz\/(l 0?) nZ(1+Q), 22\/1 _“Z+Q

BdQdZ=-2QZ(1+ 2~ Q)

6. Examples, and an Iterative Method of Solution. The correlations obtained
by Truman L. Kelley* among tests in (1) reading speed, (2) reading power,
(8) arithmetic speed, and (4) arithmetic power are given by the elements of the
following determinant, in which the rows and columns are arranged in the order
given:

10000 6328 2412 ‘0586
6328 10000 — 0553 0655

D= =4129.
2412 —-0553 10000 4248

‘0586 0655 4248 1:0000

These correlations were obtained from a sample of 140 seventh-grade school
children. Let us inquire into the relations of arithmetical with reading abilities
indicatéd by these tests.

The two-rowed minors of D in the upper left, lower right, and upper right
corners are respectively
A ="5996, B=-8195 /C="01904.
Hence, by (4-2),
¢ =-0007377, ¢=-027161, 2='84036 ............... (6°1).

By means of (4:9) or (4-11) these values give for the canonical correlations
=3945, 7,="0688 ........cooeviiiiiiiiiiinn. (62).
In this case n=N—1=139, and the standard error (527) reduces, for the
hypothesis of a zero canonical correlation in the population, to LI 0848. It is

A/139
plain, therefore, that r, is not significant, so that we do not have any evidence here

of more than one common component of reading and arithmetical abilities.

Whether we have convincing evidence of any common component is another
question. It is tempting to compare the value of r; also with the standard error
‘0848 for the purpose of answering this question, which would give a decidedly
significant value. This however is not a sensitive procedure for testing the hypothesis

* Op. cit., p. 100. These are the raw correlations, not corrected for attenuation.



HAroLD HoTELLING 343

that there is no common factor; for this hypothesis of complete independence
would mean that both canonical correlations would in the population be zero;
they would therefore be a quadruple root of the fundamental equation, to which the
standard error is not applicable. Other tests for complete independence will be
considered in Section 11; these have a sound basis, and one of them (discovered
by Wilks) gives approximately "0001 as the probability of a value of z as small as
or smaller than the value found above. We conclude that reading and arithmetic
involve one common mental factor but, so far as these data show, only one.

Linear functions a;z; + as2s and bsas + bsas having maximum correlation with
each other may be used either to predict arithmetical from reading ability or vice
versa. The coefficients will satisfy (3'4) and (8'5); when in these equations we
substitute r;='3945 for A and u, and the given correlations for the covariances,
and divide by — A = — 3945, we have

ay + *6328a; — '6114b; — '1485b4 = 0,
*6328a; + ag + '1402b3 — '1660b, = 0,
—6114a, +‘1402a; + bs + *4248b, = 0,
— '1485a; — '1660a; + "4248b; + by=0.

The fourth equation must be dependent on the preceding three, so we ignore it
except for a final checking. Replacing by by unity we may solve the first three
equations, which are symmetrical, by the usual least-square method. Thus we
write the coefficients, without repetition, in the form

1:0000 6328 —-6114 —-1485 8729
1-:0000 ‘1402 —-1660 16070
1-0000 4248 9536

the last column consisting of the sums of the elements written or understood in
the respective rows. The various divisions, multiplications and subtractions
involved in solving the equations are applied to the elements in the rows,
including those in the check column, which at every stage gives the sum of the
elements written or understood in a row. In the array above, the coefficients of
each equation begin in the first row and proceed downward to the diagonal, then
across to the right, and this scheme is followed with the reduced set of equations
obtained by eliminating an unknown, which is done in such a way as to preserve
symmetry. This process yields finally the ratios

ay:Qg:by:bg=—2T772: 22655 : — 24404 : 1.

Therefore the linear functions of arithmetical and reading scores that predict each
other most accurately are proportional to — 27772, + 2265525 and — 24404w; + 24,
respectively. It is for these weighted sums that the maximum correlation ‘3945 is
attained.

From the same individuals, Kelley obtained the correlations in the following
table, in which the first two rows correspond to the arithmetic speed and power
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tests cited above, while the others are respectively memory for words, memory for
meaningful symbols, and memory for meaningless symbols :

1:0000 -4248 : ‘0420 -0215 0573
4248 1-0000 i ‘1487 2489 2843
0420 -1487 | 10000 6693 ‘4662

0215 2489 | 6693 10000 6915
| 4662 6915 10000

From this we find ¢%="0003209, ¢ ='01792, 2=-902466,
whence ry =-83073, 7y="0583.

Since in this case s ¢, we cannot say as before that the standard error of r, when
p=0 is n~#=-0848. But, putting x*=nrs® =472, with two degrees of freedom,
we find P =-79, so that r, is far from significant. However r; is decidedly
significant.

In view of the tests in Section 11, we conclude in this case also that there is
evidence of one common component but not of two.

If cach of the two sets contains more than two variates, the two invariants
g and z do not suffice to determine the coefficients of the various powers of A in
the determinantal equation, so that its roots can no longer be calculated in the
foregoing manner. The coefficients in the equation will involve other rational
invariants in addition to ¢ and 2, but we shall not be concerned with these, and it
is desirable to have a procedure that does not. require their calculation, or the
cxplicit determination and solution of the equation. It is also desirable to avoid
the explicit solution of the sets of linear equations (3'4) and (3'5) when the variates
are numerous, since the labour of the direct procedure then becomes excessive.
These computational difficulties are analogous to those in the determination of the
principal axes of a quadric in n-space, or of the principal components of a set of
statistical variates, problems for which an iterative procedure has been found
useful, and has been proved to converge to the correct values in all cases*. We
shall now show how a process partly iterative in character may be applied to
determine canonical variates and canonical correlations between two sets.

If in the s equations (3'4) we regard Aay, Aag, ..., Aa, as the unknowns, we may
solve for them in terms of the b’s by the methods appropriate for solving normal
equations. Indeed, the matrix of the coefficients of the unknowns is symmetrical ;
and in the solving process it is only necessary to carry along, instead of a single
column of right-hand members, ¢ columns, from which the coefficients of b, ..., b5
in the expressions for a, ..., ¢; are to be determined. The entries initially placed

* Harold Hotelling, ‘* Analysis of a Complex of Statistical Variables into Principal Components?’’ in
Journal of Iducational Psychology, Vol. xxiv. pp. 417—441 and 498—520 (September and October,
1933), Section 4.
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in these columns are of course the covariances between the two sets. Let the
solution of these equations consist of the s expressions

Ag = zguibi (a = 1, 2, ey S) ............ (63)

In exactly the same way the ¢ equations (3°5), with u replaced by A, may be solved
for Abgyy, ..., Absys in the form

Ay =2hgag (F=s+1,...,8+8)......... (6°4).
B
If we substitute from (6'4) in (6'3) and set
]Cup =‘zg¢ihiﬂ ................................. (65),
we have A2 = Zhag@p  oovrrineiiiiinii e, (6°6).
B
Now if an arbitrarily chosen set of numbers be substituted for a;, ..., @, in the
right-hand members of (6:6), the sums obtained will be proportional to the numbers
substituted only if they are proportional to the true values of a4, ..., a,. If, as will

usually be the case, the proportionality does not hold, the sums obtained, multiplied
or divided by any convenient constant, may be used as second approximations to
solutions ay, ..., @, of the equations. Substitution of these second approximations
in the right-hand members of (6:6) gives third approximations which may be treated
in the same way ; and so on. Repetition of this process gives repeated sets of trial
values, whose ratios will be seen below to approach as limits those among the true
values of ay, ..., a;. The factor of proportionality A? in (6:6) becomes 72, the square
of the largest canonmical correlation. When the quantities «’, ..., ay/ eventually
determined as sufficiently nearly proportional to a,, ..., a, are substituted in the
right-hand members of (6°4), there result quantities b,,,’, ..., bs;," proportional to
bst1y .-+ bsye, apart from errors which may be made arbitrarily small by continuation
of the iterative process. The factor of proportionality to be applied in order to
obtain linear functions with unit variance is the same for the a’s and the 4’s; from
(3'2), (83'4), and (3'5) it may readily be shown that if from the quantities obtained

we calculate
1

= ————

‘\/220‘.,; Qg b,;'

then the true coefficients of the first pair of canonical variates are may’, ..., may’,
’ ’
Mmbsiy’s ..., mbsyy.

.............................. (67),

m

In the iterative process, if ay, ..., a, represent trial values at any stage, those
at the next stage will be proportional to

Qo' = DBhagtly oo (6°8).
Another application of the process gives

ay" = Zkya,’,
whence, substituting, we have ay'" =2k,s® ag,

provided we put kyg® = Zkyokag.



346 Relations between Two Sets of Variates

The last equation is equivalent to the statement that the matrix K2 of the

coefficients k,s® is the square of the matrix K of the k,s. It follows therefore that

one application of the iterative process by means of the squared matrix is exactly

equivalent to two successive applications with the original matrix. This means

that if at the beginning we square the matrix only half the number of steps will
absequently be required for a given degree of accuracy.

The number of steps required may again be cut in half if we square K2, for
with the resulting matrix K* one iteration is exactly equivalent to four with the
original matrix. Squaring again we obtain K8 with which one iteration is
equivalent to eight, and so on. This method of accelerating convergence is also
applicable to the calculation of principal components*. It embodies the root-
squaring principle of solving algebraic equations in a form specially suited to
determinantal equations.

After each iteration it is advisable to divide all the trial values obtained by a
particular one of them, say the first, so as to make successive values comparable.
The value obtained for a4, if this is the one used to divide the rest at each step,
will approach 72 if the matrix K is used in iteration, but will approach r* if K? is
used, 78 if K* is used, and so forth. When stationary values are reached, they may
well be subjected once to iteration by means of K itself, both in order to determine
r1® without extracting a root of high order, and as a check on the matrix-squaring
operations.

If our covariances are derived from a sample from a continuous multivariate
distribution, it is infinitely improbable that the equation in w,

ku - 1012 ...... kls
kzl kzz — @ .einn. kzs — 0’
ks ke .l ke — @

has multiple roots. If we assume that the roots wi, ws, ..., w, are all simple, and
regard @i, ..., a; as the homogeneous coordinates of a point in s—1 dimensions
which is moved by the collineation (6'8) into a point (@, ..., a5'), we knowt that
there exists in this space a transformed system of coordinates such that the col-
lineation is represented in terms of them by

= - = — =7 —
a; = w1, Ay = Wy, ..., g = Wglg.

Another iteration ields a point Whose transformed homo eneous coordinates are
y p
proportional to
01201, wldy, ..., 020.

Continuation of this process means, if , is the root of greatest absolute value, that

* Another method of accelerated iterative calculation of principal components is given by T. L.
Kelley in Essential T'raits of Mental Life, Cambridge, Mass., 1935. A method similar to that given above
is applied to principal components by the author in Psychometrika, Vol. 1. No. 1 (1936).

+ Bocher, p. 293.
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the ratio of the first transformed coordinates to any of the others increases in
geometric progression. Consequently the moving point approaches as a limit
the invariant point corresponding to this greatest root. Therefore the ratios of the
trial values of a, ..., a, will approach those among the coefficients in the expression
for the canonical variate corresponding to the greatest canonical correlation. Thus
the iterative process is seen to converge, just as in the determination of principal
components.

After the greatest canonical correlation and the corresponding canonical variates
are determined, it is possible to construct a new matrix of covariances of deviations
from these canonical variates. When the iterative process is applied to this new
matrix, the second largest canonical correlation and the corresponding canonical
variates are obtained. This procedure may be carried as far as desired to obtain
additional canonical correlations and variates, as in the method of principal com-
ponents; but the later stages of the process will yield results which will usually be
of diminishing importance. The modification of the matrix is somewhat more
complicated than in the case of principal components, and we shall omit further
discussion of this extension.

The process of obtaining iteratively the greatest canonical correlation, the most
predictable criterion, and the best predicter may be illustrated if we imagine that,
with three variates in each set, we have obtained from a sample the matrix of
correlations

10 7 1 5 4 2
7 10 -1 5 4 3 5
1 1 100 2 2 -4
5 4 210 8 6
4 -3 2! 8 10 7
2 5 41 6 T 10

From the first three rows we obtain the set of normal equations indicated by
10 ‘7 1 5 4 2 29
10 ‘1 4 3 5 30
10 2 2 4 20
Here the second and third rows are understood to be filled out with unwritten
terms in such a way as to make the matrix consisting of the first three columns
symmetric. The entries in the last column are the sums of those written or
understood in the respective rows preceding them. By linear operations on the
rows, equivalent to solving the equations, they are reduced to
1 423 ‘362 — 316 1470
1 ‘089 031 ‘685 1804
1 ‘149 ‘161 ‘362 1:671
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This is the numerical equivalent of (6:3). Hence g,; is the element in the ath row
and sth column of the matrix

‘423 362 —-316
G=| 089 ‘031 685
‘149 ‘161 362
From the last three columns of the given matrix of correlations we obtain likewise
the normal equations indicated by

1'0 8 6 5 4 2 85
1-0 7 4 3 9 34
10 2 5 4 34
The three columns beforc the check column appear in the same order as in the

lower left corner of the matrix of correlations. The solutions of these equations,
corresponding to (6°4), are the elements of the matrix

522 385 054
H= ‘121 —-385 —-199 |,
— 198 *539 507
in which A is the element in the sth row and Bth column. Upon multiplying the

rows of G by the columns of H we find that k.s, defined by (6°5), is in the ath row

and Bth colunn of
327 —-147 --209

K=GH=| —-08 -392 ‘346
‘026 ‘190 ‘160

The check columns are used to verify the calculation to this point, and may be
used also at the next stage, which is to compute, by multiplying the rows of K by
its columns,

‘114 —-145 —-153
K:=} —-052 -232 -209 ||,
—-003 -101 -086

and in the same way,
‘021 —-066 —-061

Kt=| --019 -082 ‘074
—--006 -033 -029

The iteration process may now be begun with the trial values 1, 1, 1; when
this set (which may be regarded as a vector) is multiplied by the rows of K* there
results simply the set of sums of rows, namely

- 106 137 ‘056.
Dividing all three of these by the first we have
10 -13 -5
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Multiplying this vector by the rows of K* gives
‘137 —-163 —-063,

which upon division by the first becomes

1-00  —119 - -46.
Multiplication of this vector by the rows of K* and division by the first resulting
element gives

100 —118 —-46,
which upon another repetition of the process recurs exactly to the two decimal
places. We therefore return to the matrix K with these trial values; multiplying
them by the rows of K, dividing by the first, and then repeating the process once,
we have the values

5968 — 707 —-272,
which, divided by the first, become

a’=1, ag=—1187, a3 =—"456,

are stationary under further iteraticns, and are correct to three decimal places.
The last divisor, ‘5968, is the square of the greatest canonical correlation, also
correct to three places; hence r;= V5968 = -773. Substitution of a;’, as’, @z, in
the right members of (6°4), which comes to the same thing as multiplication by
the rows of H, yields

by =040, b5 =669, bg' =—1-069.

Then from (6'7) we have m =1-016; when this is multiplied by the values of a,’
and b; just found, there result the coefficients in the expressions for the leading
canonical variates, namely

uy = 10162y — 1-2172o — 46323,
v = 'O4‘1-’E4 + ’6803:5 - 1'086506,

which have unit variances and the correlation *773.

7. The Vector Correlation as a Product of Correlations or of Cosines. We shall
in this section define certain linear functions of the variates in each set, forming
two sequences, of which the product of the correlations between corresponding
members is the vector correlation g. This result will be used in Section 8 to obtain
an exact sampling distribution of g. The resolution, though valid with respect to
the population, needs for our purposes to be made with reference to a sample. We
shall use the pseudo-observations defined in Section 5, but shall write the sample

covariance (5-10) in the form
AS’&L'LatM

SLM = eeiiiciiitetitiiteieiaiteiranans (7'1),

n
where S stands for summation from 1 to n, the number of degrees of freedom, and
where L and M stand for an arbitrary pair, equal or unequal, of the subscripts
1,2 ...,s+t.
The sequences of variates which we shall consider may be defined as follows.
First, let " =2;. Then let z," (@ =2, 3, ..., s) be the difference between z, and
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a least-square estimate of z, in terms of @y, ..., ®.—;, all divided by such a constant
that the variance of z,’ is unity. To define the other sequence, let #,,," be a linear
function of sy, ..., @4 having maximum correlation with z;; and let 4’
(B=2, ...,5) be a linear function uncorrelated with «,.,’, ..., #;4s—,", and having
maximum correlation with #g". All these are to have unit variances. For a sample
we may set aside as infinitely improbable the possibility that any of these new
variates should be indeterminate. Putting Rj for the correlation of " with ;s

we shall find that
q=R1R2...R8 ................................. (72).

The process will be more perspicuous in geometrical than in algebraic language
because of the simplicity of the geometry associated with samples from normal
distributions, and the remainder of this section will be in geometrical terms. In
the space of n dimensions in which the pseudo-observations of a variate are the
coordinates of a point, there is for each variate a spherically symmetrical distribu-
tion of probability density centred at the origin. Let X denote the point whose
coordinates are the pseudo-observations apy, #re, ..., #» on the variate
(L=1,2,...,8+1t). Let P, be the flat space of ¢ dimensions containing the origin
O and the points X,y,, ..., X,y determined by the second set of variates.
Perpendicular to OX; will be a flat space of n — 1 dimensions, whose intersection
with P, will in general be of ¢—1 dimensions. Denote this intersection by P; ;.
Let P;_, be the flat space of ¢ —2 dimensions contained in P,_; and perpendicular
to 0X3; and so forth.

Let X’ be the point on 0X; of unit distance from the origin. We further define
points X', ..., X/, all at unit distance from the origin, such that 0X;’, 0Xy/, ..., 0X/
are mutually perpendicular, and such that 0X,' is coplanar with 0X; and 0X,;
0X3' is in the same flat 3-space with 0X;, OX, and OXj; and so forth. The
coordinates

..................

of these s points will thus satisfy
S.L'u’ .Z‘B, = 8,,3 ................................. (7'3),

where 8,5 is the Kronecker delta, equal to unity if ¢ =8 but otherwise zero, and
where S stands for summation from 1 to n.

Let us also rotate the n axes so that the first ¢ of them lie in P;; and let an
internal transformation be performed upon the ¢ variates of the second set such
that, for this particular sample, the coordinates representing them become

100 .. 0
010 .0
001 e O | e (7-4).
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None of these transformations affects the value of ¢, and we have, adapting the
definition (4-2) to this case, by replacing the covariances by the functions (7°1) of

!’
L11y -
determinant by n,

0/

2 (- -
q_'( l)sAIBI)

where now 4’ =B’ =1, while

., &g and of the elements of (7'4), and then multiplying each row of each

0 .. 0 .’1,'11, ...... JU’
0...0 wsl' ...... Lyt
C'= X1 g 1 0. O i (7'5).
.Z'u,. oo Lt 0 0. 1
Now letting X stand for summation from 1 to ¢, we introduce determinants
21‘1,2 ...... 2.1'1,505’
Dp=| i [ (B=1208) (7°6)
Z.l‘p'.Tll ...... prlz

Upon expanding (7'5) with respect to the first s rows and columns we find, with
the help of Section 2,
@#=(-1ypC"=D,

Now any line perpendicular to 0X; and 0X, is perpendicular to all the lines in
the plane of these two, in particular to OX,’. Hence P;_;, which consists of lines
perpendicular to OX; and OX,, is perpendicular to 0X,". In like manner, P,z is
perpendicular to 0X,’, OX,' and OXj,’; and in general P, s is perpendicular to
0X,, 0Xy, ..., 0Xy'.

Since P,_g lies entirely within P, the coordinates of any point U in P, g will
be linearly dependent on the rows of (7-4), and so of the form

Uy, Us, ooy Ug, 0,0, oo, 0, (7'8).
The orthogonality of OU to 0X,’, ..., 0X,’ means that
Suzd =0 (@=1,2,...,8) et (7°9).

Now let 6gy denote the angle that OXg,," makes with P, g; that is, 6., is the
minimum angle of OXg.," with a line OU such that the coordinates of U are of the
form (7-8) and satisfy (7-9). Without loss of generality we may also take U at unit
distance from the origin, so that

UE=1 . (7-10)
Since Szg41'2=1 by (7'3), we then have
o801 =2uwp i1 ceeeiiiiiiiiiee (7-11).

To determine the minimum angle we therefore differentiate with respect to uy, ..., u,

the expression , ,
Duwgr —§y Zud — M Sum — ... — Ag Zuxg’
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where vy, Ay, ..., Ag are Lagrange multipliers. This gives
Alxlh/ +... +Ap.’l25h, = Zg41, h, —YUp (h = 1, ooy t) ......... (712)

Multiply (7'12) by u, and sum with respect to k. The left member disappears
by (7'9), and from (7'10) and (7-11) we have

Yy = COS 05+1 ................................. (7'13).

Upon multiplying (7'12) by &.’, summing with respect to %, and using (79),
we have, fora=1,2, ..., B,

MEc 2+ D e =2 e (7'14).
Eliminating Ay, ..., Ag from the 8+ 1 equations (7-14) and (7'12) we have

Z$1,2 ...... 2.7;1, &g le Zg 1
Syt o Suy?  Sayzsn =0 e (715)
T T Zan’ @41, n — YUn

Multiply the last row of this determinant by @g.1,s" and sum with respect to A

from 1 to t. The last element, with the help of (7:11) and (7°13), reduces to
Sapn ~ ¥,

and so, from (7-6), we have

P2 = %;—1 ................................. (7°16)
Hence, from (7°'13), L
cos0ﬁ+1=\/ 5:1 B=1,2....,=1) cceeeerrinnnn. (7°17).
The cosine of the angle which 0.X; makes with P, is
cos Oy =NZzy2= VD .eooovriiiiiiiiiiiiiii (7-18).

Multiplying together all the equations (7'17) and (7'18) and recalling (7°7), we
obtain
g=cosl;cosby...cos 05 ....ccovvniiiiiiiiiil (7:19).
It is obvious that the correlations Rg defined at the beginning of this section
have the property that
P Rg=cosbg,

so that (7°19) is equivalent to (72).

8. An Exact Sampling Distribution of . We shall now deduce the exact dis-
tribution of ¢ in samples from a multivariate normal population in which the vector
correlation is zero, for the case in which one of the sets consists of exactly two
variates. From (4'5) it follows in this case that at least one of the two canonical
correlations is zero. If the numbers of variates in both sets are 2, we have essentially
the case of the tetrad difference; the distribution will then be symmetrical, since
the population value is assumed to be zero. Let p2 =0, and for brevity put v for p,?,
which will be a parameter of the distribution.
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The angle 6; defined in Section 7 between the line 0X; determined by the
sample values of the first variate and the flat space P, determined by those of the
second set has the property that R, =cos f; is the multiple correlation of #; with
the second set of variates. The population value of this multiple correlation is p;.
We assume all the variates subject to random sampling. In this case R, will have
the “A” distribution discovered by R. A. Fisher*. In our notation, with samples
of n +1 from which the means have been eliminated, or in samples of # + k from
which % degrees of freedom have been removed by least-squares elimination of
other variates, the distribution of R; is

_...P_(g)__(l_v)%(R2>£%?(1_R2;L_;—2F(1” not VR2)d(R2)
P(%>F(7l;_t> 1 1 S T(8'1),

with ¥ denoting the hypergeometric function.

The points X' of Section 7 corresponding to an infinity of samples form a globular
cluster having spherical symmetry with centre at the origin, in the flat space of n—1
dimensions perpendicular to OX;. In this flat space is the space P;_;, which makes
with OX,' the angle 0,. Hence R,=cosf, has the distribution of a multiple
correlation coefficient in samples from an uncorrelated normal population, with ¢—1
“independent” variates. We replace n in (8'1) by n—1, ¢t by t—1, B, by R,
v by zero, and have

r (%l) t-3 n—-t-2

(R 2 1-R?) 2?2 d(R?) ......... (82).

T (t -1 T (n - t)

= )r (5

From (7-2) we have ¢ = Ry R,. Hence put Ry = 7% , AR, ____;l?q in (8:2), multiply by
1 1

(8°1), and integrate with respect to R, from g to 1. This gives the distribution of ¢

in the form

rEHr ) 2 e
o
2 “mttl

—t-
! 2 2 n n t .
x qu [(A-R)(R-g»] * (B (35 3 vBY) (R ..(89)

where the subscript is dropped from the variable of integration. Now

P(%)P (L;l)_ (n—2)!

T T

n

* «“The General Sampling Distribution of the Multiple Correlation Coefficient’’ in Proceedings of
the Royal Society, Vol. cxx1. a (1928), p. 660.

Biometrika xxvin 23
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Making this substitution and changing the variable of integration to
_1-R?
@=F &

we have therefore

(n—2)! g . t;23 2
- — A=»)"(1 -1 (g% * d(g?)
gnt (¢ — 2)! I" (T
1 n-t-2 -n+t+1 )
xjo [t1-2)] 2 [1-(1-¢¥a] 2 F{g %,é,v[l—(l—q2)w]}dw

If it is supposed that the values of the variates in the second set are fixed,
instead of varying normally from sample to sample, Fisher’s distribution “C” of the
multiple correlation coefficient should be used instead of his “A” distribution.
This gives for q a new distribution, which for s =2 may be written in terms of
a confluent hypergeometric function

2 2\n-38 ! 2 2 2
et (= grgdq | [2(1-9)] 7 [1-(1-g)a]
5

227 21-(1-P)=

However the conditions of sampling under which q is likely to be used are such
that (8'4) appears to be the more important form, and we shall give no further
consideration to (85).

By extension of sthe reasoning above the distribution of ¢ may be found for
larger values of s, provided all but one of the parameters py, ..., p; vanish. Thus
for s =3 we have, from (7-2),

£ -
w
2
xF{" 1, L —”q—}dm ...... (8'5).

q=RiRyRy=q'Rs,
where ¢’ has the distribution (8:3), i.e. (84), while Rs has the distribution obtained
from (8'2) by replacing R, by Rs, n by n—1, and ¢ by ¢ — 1. Combining this with
(84) in the same manner that (8'2) was combined with (81) to produce (8:8), the
new distribution of ¢ is obtained. This process may be repeated to obtain the
distribution for values of s as great as desired; but it must of course be remembered
that s <t.

It is tempting to try to obtain the general distribution of ¢, without our
assumption that all but one of the quantities py, ..., p; are zero, by treating these
as population values of the multiple correlations whose distributions are used
successively in finding the distribution of q as above. However this suggested
procedure appears to be incorrect. If pp+ 0, the centre of the globular cluster
formed by the projected X' points will have a centre which is not on P, ;, where
it should be if the multiple correlation distribution were to be amplified.

9. Moments of q. The Distribution for Large Samples. We shall derive the
even moments of the distribution of Section 8, assuming that v does not take
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either of the extreme values 0 and 1. The latter is the case in which ¢ becomes
a partial correlation coefficient, the theory of which is well understood. The case
v =0, corresponding to complete independence, is a very simple one, concerning
which all information desired may be obtained from Section 11. The moments
will be obtained by processes involving repeated interchanges of order of the
processes of integration, differentiation, and summation of series. It will be
observed that the uniform convergence and continuity required to justify these

interchanges exist, provided » is definitely between 0 and 1 without taking either
of these values.

The odd moments of ¢ about zero, which require no consideration unless s = ¢,
vanish in this case when only one of the canonical correlations is different from
zero, since the distribution of ¢ must then be symmetrical. Let u,; be the 2kth
moment of g, which is also the kth moment of ¢2 about zero. To determine its
value, multiply (8-3) by ¢* and integrate with respect to g2 from 0 to 1. In the
double integral thus obtained, a reversal of the order of integration means that g2
will vary from O to R? and then R? will vary from 0 to 1. The first integration in
this new order may be effected at once, since upon putting ¢ = R?z, d (¢%) = R?dz,

we have
t—1 n—t
o T e S e TR T ()
@ @ T @)= !
0 1"(—2 +lc>
Therefore
n n—1 t—1
rg)r ("5 )r () o
Mok = -
t t—1 n—t n—1
THRC R E
1 t__g+k n—t—2‘ nn t
2 2 o2 2 2
JRCORICES Su i (R . FI0N
Expanding the hypergeometric series and integrating term by term, since
t n-—t
1 Bk n-;-2 I‘(§+k+r)f‘(—2—>
j(m) (1-RY ? d(R)= ~ ,
0
we obtain
(PN s vl
Hae = 22T n:I (1-vy° =0 n ¢ n v ().
r(—2 )F(T +Ic) r'l"(é)f‘(§+r>f‘(§+k+r)
In this we make the substitution
2 1 1§+r—1 et o,
= =) WL  serecsscnnns 92,
r(k)jo”” (1-ofdo ®2)

I‘(g+k+r)

23—2
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upon reversing the order of integration and summation we have
T (t}) T (t;l + /c) n
2 2 2
r(5o)r (B +#)ra ho
)T (k)T

1 w l"(lL-!-T)I‘ E+/c+r) LI
IR 2 2 2
0

=0 l"(g)l"(é—%—r)

Now make the further substitution

MHax =

t
F<§+k+r)~w—§—1'+lik STl s 93).
P(-t—+r) - da
2

which gives, upon interchanging the order of summation and differentiation,

CSLC I

Hox = (I—V)é
t—1 -1
F(T)F<n7 +k)1‘(k)
n
X n;t dr %_I_k_l © P<:+
xf s (1-aptla T == Ly |da
0 =0l P(ﬁ
The sum is now a binomial expansion and
() (5 +#) n
\ 2 2
Hox = t—l n_l (1—'1})
F(—2—)I‘( 5 +/c)r(k)
n-t

1 —— dk E+k_1 _n
2 . 2 2 .
X Joa: (1—z)* l”—da,l‘ [w (1-wa) ] dz...... (94).

From this. form, by % successive integrations by parts, it is easy in any particular
case to calculate uy;. Thus for k=1 we have

n-t t

n n
t—1 3(* 5 d[ 3 V2
n_l(l—v) joa: %[a: (1 —wz) dz

Ha =
i1 n _n P _n
=;_—1~(1—-v)?{(1-—v) 2—%—1 22 (1—va) de}

- 0

n
_t=1 n—t 3 n nn
—,;Tl{l‘ PG F(é’ 33+ h ’)}
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Euler’s transformation (10'1) of the hypergeometric reduces this to

Mz:‘“1{1-"‘t(1_y)p’(1,1,g+1,u)} ............ (9'5),

n—1 n

in which the series can easily be calculated to any required accuracy. For large
samples the convergence is extremely rapid. A series of powers of »~! may also
be obtained by expanding each term of the hypergeometric series:

=3 {y+(1—u) [t;’2”+2(‘+2732”“8”2+...]} ...... (9°6).

This form brings out the manner in which, for large samples, ua varies with ».

The moments may alternatively be found by a slightly different method, giving
a general result in which an integral does not appear explicitly. In the identity
(93) let « be replaced by v, and make both this substitution and (92) in (91).
The result is

() e
pm et L (1)
r( 5 +Ic>I‘(T)I‘(k)
n F(ﬁ+r> LI
k(15— © stk+r-1
x%[ @ (1-2y1% —27—.%71;2 da.
v 0 r=0
F<§>7"
The integral equals
t n n t I‘(’-l>l"(k)
+k-1p1 ;-1 - = s+k-1
»? fw2 A-ap1(1—va) *da=+" LA F(g,g,g+k.v>,
0

n
FG+Q
whence

n—1 n t—1
r)rE)r (e +4) ta

- n—1 n t—1 v (1._,,)5
(g )T (34T (55)

t
¥ | gtk-1 /m n n )
Xa‘;‘k[v F<§,§,§+IL,V)] ...... (97).

This may be made even more explicit by performing the differentiation with the
help of Leibnitz’ theorem; and Euler’s transformation may be applied to each of
the hypergeometric functions to give a rapidly convergent series. In this way we
obtain

ST G il st ol (R0 R Catntd
A Ty R (k)T ()T (3 %)

n

x k=7 (1 = vy’ F(L-, k'

+ 2%k -7, v) ...... (98).
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The expressions obtained from this by substituting particular values of k are
different in form from those obtained directly from (9'4), but are reducible to them
with the help of the Gauss relations between “neighbouring” hypergeometric
functions.

From (9°7) it is easy to see that wo=1, as it should; this checks a long chain
of deductions.

The asymptotic value of uy for large values of n will now be investigated.
In the expression for the kth derivative obtained from (9'4) by Leibnitz’ theorem,

the term of highest order in = is

r k-1 n

n(n —gk
g (51) - (Grh-1)a-m) T

whence
SiicaLivas INIIGL
T EerEre ()
xﬁ”"éﬂ“l(l—51’7)10_1(1_”‘”)_;—kd{E
n—1 t—1 n n
T AT - e
P( 5 Tk)r( 5 ,F(2+2 (2)
n—1 t—1 n
: ZE1—2— I‘(Z+k>:2<§+]; ; ka(k, Ic,g+2k> v)
(5 1)) 2)rG)
L5 +h)

Hence, for s=t= 2, the distribution of ¢ approaches the normal form, with variance

Y as is seen either from (9:9) or from (9-4), and mean value zero.
n

For t + 2, the distribution of ¢ does not behave in this way. As in the case of
multiple correlation, it is then confined to positive values. An approximation to
the distribution is however suggested by the foregoing asymptotic values of the
moments. These are in fact the moments of the y? distribution with ¢ —1 degrees
of freedom, if we put

2
2 "9
X =-,

The approximate distributions thus obtained may tentatively be used for testing
the significance of ¢ in large samples when » has a value not too close to zero. For
small samples and small values of », the methods of the next section are appropriate.
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10. The Distribution for Small Samples*. Form of the Frequency Curve. The
distribution of Section 8 may in certain cases be expressed in elementary forms.
If n —t is even, the Euler transformation

F(a,b¢c,2)=(1—-ay*PF(c—a,c—b,¢,z) ............ (10'1)

may be applied to the hypergeometric function in the distribution to give a
terminating series, and the integration can then be carried out for each term, the
integrand in (83) being a rational function of R, or involving (if'¢ is odd) a single
quadratic surd.

Consider for example the simple case ¢=2, n=4. Since ¢t=s, it is more con-
venient to work with the distribution of ¢ than with that of g% We halve the
numerical coefficient because negative and positive sample values are distinguish-
able. The distribution (8:3) becomes, for positive values of g,

1
(1-vfdg [ F(2 2 1,vRYdR.
g
Using (10°1), expanding F(—1, —1, 1, R?), and putting v = p? this becomes
1
(1— p¥)2dg j (1— p*R®2(1 + p2R?) dR,
q

or, carrying out the integration,

(1-p% {log 1-pg 1+p 2p9(3-p%") 2038 -p") dq.
8p I—p 1+pg (1-p%? (1-p¥ )

Other special cases of the distribution function may be obtained by integrating the
distributions obtained by R. A. Fisher for the multiple correlation coefficient for
even values of nt.

A more systematic development, not depending on the oddness or evenness ot
n or ¢, and valuable when n and v are not too great, is obtained by expanding the
hypergeometric series in powers of » and carrying out the integration term by
term. Applying this procedure to (8'4) we obtain integrals of the form

1 n_—t__2 ___-n+t+1+k
j w(l-o)] 2 [I-(1-g)a] 2 "'do (k=0,1,2, ...).
0

But this is itself a hypergeometric integral, and equals
r (3)
2 m—1 m 2
(m—l)!F< 5 ——k,g,m,l——q>,
where for brevity we put O I (10-2).

* The smallest samples to which the text is applicable are those for which n=s+t. For smaller
samples, the matrix of pseudo-observations has more rows than columns; consequently there is a linear
relation among the rows, i.e. among the sample variates, whose number is thus in effect reduced, so
that a simpler theory is adequate. Thus, if s=t=2and n=3, g reduces to a partial correlation coefficient,
whose distribution is known.

1 Op. cit., p. 661.
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Introducing the functions
14\ om—1 m 2) .
v,,_(-2—) F(—-z——lc,§,nz, 1—¢?) oo, (103),
the distribution (84) may thus be written, for ¢ >0,
¢
- ! n © 3
(n-2)] VR (1—qrig-tdg & —2 -

(m(l— k=0F2(g)F(%+k)k!

A factor } must be applied to this expression in the case ¢ =2 if we then distinguish
negative from positive values of g.

The first of the “relationes inter functiones contiguas” of Gauss* is

w)=[c— 20+ (a—b)z] F(a, b, c,2)+a(l—a)F(a+1,b,c, x)

Fa-1,0,c,
c—a

m—1
2
this shows that (10-3) satisfies the linear difference equation

@2+ 1) A+ v+ (m—2k—1) ¢Pvpy
Vet = m + 2k +1

which may be used as a recurrence relation for computing the successive v;’s as
soon as we have determined two values whose indices differ by unity.

From the identity of Gauss (ibid., p. 227)

Putting a=

—k, b=%7', c=m, z=1-¢,

V1=
F(a,B,a+B+§,w)=F(2a, 28, ¢ +B+4, l.%”f)
we find at once
F("5 g m 1=¢t) =F (m—1,m, m, 129 i 106)

In the series expansion of this last function, numerator and denominator factors
cancel in each term in such a way as to leave a binomial expansion

( _l%i)—ﬂn+l=(i%)7n—l

In this way we have, from (10-3) and (10°6),
Vo=l eiiiiii ittt (10'7).

In (10'3) put k=—1, and apply (10-1). The result reduces, with the help of
(10'6), to
vy=qL
We have thus obtained two consecutive values of v, from which the rest are

successively determined by means of (10'5), a relation which may also be written

2k +1

m {(1 + q‘l) Vg — 2q2vk_1} ............ (10'8).

— 2
V41 =G V1 +

* TWerke, Vol. 1. p. 130.
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We thus find in turn
(a-¢?
m+1"’ m+ ‘3
It is easy to show by means of the recurrence relation that the limit of v, as m
increases is ¢* and that the remaining terms of v, constitute a polynomial in ¢
having the factor (1 — )2

For a test of significance of q it is necessary to integrate the distribution from
an arbitrary value to unity. For this purpose it is convenient to put p=1—g. In
terms of p,

=q+ vg=¢q*+

(1-q)* (q + :ntql)

2

vl—l—p+mﬁ_1,
L 3\, 3 3 .
12_1—2p+(1+m+1>p Tl T m 3P
_ m+3 , m+13 , 3(2m+11) 15p8
w=l-3p+3 T P T P Y D) P D) (m+9)
15p°
(m+l)(m+‘3)(m+5)

The distribution (10'4) may, for the leading case ¢ = 2, be written
l n\2 n + 1\? v0?
(n —2) (1 — )2 -3 {1 + (§> wv+ (2> ( ) ot } dp...(10°9).

The series is uniformly convergent and may be integrated term by term, thus
providing a test of significance for the tetrad difference. It is not however very
convenient for computation unless » and v are small. For large values of n, the
method of the preceding section may be used: the standard error often gives a
satisfactory test of significance, even when used with the crude inequality of
Tchebycheff, which takes no account of the nature of the particular distribution.

Light is thrown on the form of the frequency curves by the expansions we have
just obtained. The case ¢ =2 stands out as of a special character, different from the
rest; this will be true in general where s=¢. This special character is related to
the fact that positive and negative sample values of ¢ are distinguishable only if
s=t. In other cases, just as in that of the multiple correlation (i.e. that of ¢ when
s=1), the values must be taken as positive, and ¢? is in some respects a more
natural variate to use.

The vy, and therefore the convergent series in (10'4) and (109), and also the
derivatives of the v, and of the series, take definite finite values both for ¢=0 and
for g=1. From (10-4) it is therefore evident that the frequency curve for ¢ has, for
g=1, contact with the axis of order m —2. For ¢=0 the ordinate of the curve is
zero for ¢ >3, but has a finite value for ¢ =2.

The derivative with respect to ¢ of the integral in (83) has, if v < 1, a finite
negative value for ¢ = 0 as well as for every positive value of q. The ordinate of the
distribution curve for =2 will therefore have these properties. This curve must
be symmetrical about ¢ =0. Hence it is not flat-topped, but has a corner above
the origin.
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But if v=1 the distribution of g for s=¢ =2 does not have such a discontinuity
in the middle. For in this case linear functions of the variates in the two sets exist
which are perfectly correlated with each other, and are thus for our purposes identical.
Taking these as #; and x5, (1-2) shows that ¢ is in every sample the partial corre-
lation of the remaining two variates. Hence when v=1 the distribution becomes
identically that of the partial correlation coefficient. According to R. A. Fisher's
work *, this is the same as the distribution of the simple correlation coefficient,
with the sample number reduced by unity, a distribution having continuous
derivatives of all orders throughout its range.

11. Tests for Complete Independence. If s=2 and both canonical correlations
vanish, the normal distribution of the population implies complete independence
between the two sets. No linear function of the first set is correlated with any of
the second. In this case »=0, and the distribution of ¢ reduces, as is at once
evident from the form (10-4), together with (10°2) and (10-7), to the extremely
simple form,

(n—2)!
(t=2)!(n—t-1)!
for positive values of g. Thus ¢ has in this case the same distribution as the square
of the multiple correlation coefficient in samples of n (= N — 1) from an uncorrelated
normal population, with ¢ — 1 variates.

T ) Y SUSUUUROT (11°1),

The question whether complete independence exists between two sets of variates
for which we have sample correlations may be investigated by computing ¢ and
determining from (11:1) whether the probability of so great a value of g is negli-
gible. This requires the integral of (11'1), which is easy to compute for any
moderate value of ¢. For large values of ¢ it may be obtained from the Tables of
the Incomplete Beta Functiont. For t=2 the probability of a greater value of |g|
if complete independence really exists is simply

P=(1=|g])"2=(1= g3 eerrirrrrreerrerrene (11-2),

where N is the number in the sample. In this way a very simple test for complete
independence may be applied.

But this is not by any means the only possible test of complete independence
between two sets. Indeed, the distribution of the vector alienation coefficient

(Section 4),
D

=B’

has been found by Wilks under this same hypothesis of complete independence
and normality}. This distribution, which was obtained by means of its moments,
reduces for the case s=2 which we are now studying to

n-t-3
= {;’&fﬁlt_ 5¢ ° (- VY ide o (11-3).

* «The Distribution of the Partial Correlation Coefficient’’ in Metron, Vol. 1. (1924), pp. 329—332.
1 Biometrika Office, 1934. T+ Wilks, op. cit.

2




HaroLp HoTELLING 363

The range of possible values of z is from 0 to 1, the latter corresponding to
complete independence between the two sets of variates, just as does ¢=0. gand z
are not functionally related; for a continuum of values of either can be found which
1s consistent with any value of the other. The field of the joint distribution of the
two is easily delimited by reference to the canonical correlations 7y and .. Indeed,
if we always take ¢ >0, we have from (4:10) that the field of variation of a point of
coordinates ¢, z is in the quadrant in which both are positive, and is bounded by

the parabola
2=(1=q) (i (11+4),

shown in Figure 1. The best agreement with the hypothesis of complete independence
is shown by a sample for which z=1 and ¢ =0, and which therefore corresponds to
the point in the upper corner of the figure,

4

AN

AN

\

q

Fig. 1.

If we represent a sample by a point in a plane in which 7, and r, are rectangular
coordinates, and take r as the greater, then the field of variation is the right
triangle for which 0 <7, <71 <1. The point corresponding to best agreement with
the hypothesis of complete independence is in this case the origin. The curves
q = constant and z = constant, shown in Figure 2, are respectively hyperbolic arcs,
and quartic curves which in the neighbourhood of the origin approximate circles.
Their equations are

™=, (1 —7‘12>(1 —7‘22)=Z ..................... (115)

To test complete independence by means of z, we need the integral of (11'3)

from zero to the observed value. For ¢ =2 this is
n-3
P=22 {(n=2)A=2)+V2oorrreeeiiienn.. (11°6).

Like the integral of the distribution of g, that of (11'3) is easily found numerically
from the Tables of the Incomplete Beta Function.
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The existence of two different, though exact, tests of the same hypothesis makes
us ask in what circumstances each should be used. No general answer appears
to be possible to this question; but if we make sufficiently special assumptions
about the nature of the deviations from our hypothesis that are likely to occur, or
test for deviations of a sufficiently special character, a unique solution will exist.

In order that z differ from unity, it is seen from (11'5) to be sufficient for esther
of the canonical correlations to differ from zero. But in order that ¢ differ from zero,
it is necessary that both correlations differ from zero. This suggests that the z test
will be the more sensitive to deviations from complete independence resulting from
the existence of only a single component common to the two sets of variates; but
if the correlations of one set with the other result from two independent common
components operating to an approximately equal extent, the deviation from in-

P .
A v
™~
\
?\
NCI
\\.
%
\\ ?\\.-I
X 2
&
n
Fig. 2.

dependence will be revealed by g more clearly than by z. This conclusion is
confirmed by a comparison of (11'2) with (11-6), putting for ¢ and z their values
from (11'5). If o=y, then

P=(1—=r®2% P=1-r"3{(n—-2)r2+1—n?},

so that P < P’, and ¢ provides the more sensitive test. If on the other hand 7,=0,
P =1, so that ¢ provides no evidence whatever of deviation from independence,
though for a large enough sample P’ becomes arbitrarily small, supplying evidence
to any desired extent, if 7, has any constant value other than zero.

Let us apply both tests for complete independence to Kelley’s correlations
cited in Section 6. For the correlations of arithmetical with reading abilities the
values (6'1) of ¢ and z were obtained, with s=¢=2. From (11'2) the test for
complete independence based on ¢ gives P =023, a probability so small that we
may conclude that the two kinds of ability really have something in common.
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The same conclusion is given even greater definiteness|by the z test (11'6), from
which we have P’ =0001.

The comparison of arithmetical with memory tests in Section 6 was for the
values s=2,¢=3. In this case we find from g that P =86 x 10, while the test
for complete independence by means of z gives P'=10 x 10~2, Thus 2 gives a more
sensitive test, and a more conclusive demonstration, of complete independence in
both these cases than does q. The underlying reason for this is the considerable
inequality between the two canonical correlations in each case.

One practical consideration in favour of the g test is that ¢ is somewhat easier
to calculate than z. The chief ground for distinction between them is however their
sensitiveness to different types of deviations from complete independence.

Wilks in a later paper* derived the z test for complete independence from the
likelihood criterion of Egon S. Pearson and J. Neyman. The considerations of this
section therefore are relevant to an understanding of this criterion.

It is clear that a full understanding of the relations between two independent
pairs of variates necessitates a knowledge of the bivariate distribution surfaces of
7y and 7y, and of ¢ and 2. These we shall proceed to investigate.

12. Alternants of a Plane and of a Sample. The common method of specifying
the orientation of a plane by the direction cosines of its normal is unsatisfactory in
a space of more than three dimensions, since then a plane has an infinity of normals
at each point. Instead we shall use determinants which may be regarded as of the
form known as alternants. If in a space of n dimensions a flat space of & dimensions
is determined by the origin and % other points, we shall call the k-rowed deter-
minants in the matrix of the rectangular coordinates of these & points the alternants
of the k-space. The alternants are C;» in number, and are connected by numerous
quadratic relations. The number of degrees of freedom of the k-space through
a fixed point is k(n — k). The alternants depend only on the k-space, and not on
the particular points used to determine it, except for multiplication of all the
alternants by a constant; for to replace the % points by & others in the same k-space
is to replace their matrix of coordinates by a new one whose rows are linear functions
of the old; and this merely multiplies all the k-rowed determinants by a constant.

Taking the case k=2, a plane containing the points

Z1, Xay o0y Tn,
. . Y Y2, -3 Yn
1s specified by the alternants
Pis = ZiY; = XY;  cveeniiiiiiiiiiiiiiiiiiiiian, (12'1),

which are analogous to the Pliicker coordinates of a line. Indeed, the planes
through a point in n-space are in one-to-one correspondence with the lines in which
they meet an (n — 1)-space not containing the point.

* «On the Independence of k Sets of Normally Distributed Statistical Variables®’ in Econometrica,
Vol. m1. (1935), pp. 309—326.
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The relations connecting these alternants, apart from the obvious relations
Pig== = Pig  cervrerreriiiiiiiiiiiiiiii (122),

are obtainable from the fact that, on account of identical rows,
T; T Xy T
Yo Yi Yr Ym
T; T Ty T
Yo Y Yr Ym

Applying a Laplace expansion to the first two rows of this determinant we obtain

PiiPrm — PixPim +pimpjk =0 (123)

There is one of these relations for each combination of subscripts, but not all are
independent. To obtain a set of independent relations which shall imply all the
rest, we first observe that not all the p; can be zero if a definite plane is to be
specified, for in that case the z- and y-points would be collinear with the origin.
Let the notation be arranged so that p;2#0. Then in terms of

Pua, P1a. Prss "”p‘"} ........................... (12:4)
_p%) p24) ~-';p2n

any other alternant p;; is determined from (12-8), by putting k=1, m = 2, so that

=0.

Pulos “PuPsi | e, (12:5).
P12

The relations (12'5) constitute a complete set of independent relations of the
form (12'3). For if in the left member of (12:3) we substitute for all the alternants
the expressions obtained from (12:5) by putting the several combinations of sub-
scripts in place of 7 and j, the resulting equation is satisfied identically. Furthermore,
any set of quantities p; (¢, j =1, ..., n) satisfying (122) and (125), and not all zero,
determines uniquely a plane through the origin. For, supposing that p12#0, we
may obtain the coordinates of two points not collinear with the origin in the
following manner. Let #;=y;=0, and let 3=1. Putting ¢=1, j=2in (1211)
we then have y; =—pia. Then putting first j=1 and then j=2, we obtain

Pi=

;= %3 =:p££l; and y; = py. The points whose coordinates are thus determined
1 12
cannot be collinear with the origin, for if they were the alternants would all be zero.

Since the alternants of a plane have so far been determined only to within
a multiplicative conscant, we may determine thera uniquely if we add the condition

Zp,f‘=1.......; ............................ (12.6).
(n—1)

. . n
Here we use the sign 2 to mean summation over the — g alternants

yoth D13, oo Pa—1,n
for which the first subscript is less than the second. This condition on the
quantities (12'4) shows that the number of independent alternants is 2n — 4, which
is the number of degrees of freedom of the plane.
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We define the alternants of a set of observations of two variates on n individuals
(or rather with n degrees of freedom after elimination of the mean and possibly
other variables and an appropriate orthogonal transformation of the observations)
as the determinants p; in the matrix of observations, or of pseudo-observations,
multiplied by a constant. It will frequently be convenient to choose this constant
so that (12:6) is satisfied. This definition breaks down in the case where the
determinants are all zero, but if the observations are a sample from a continuous
distribution this is infinitely improbable, and we shall disregard this case.

It is clear that all relations between two pairs of variates that are invariant
under internal linear transformations of the pairs, and are based on a sample, must
be expressible in terms of the alternants of the two pairs; for such relations must
correspond to relations between planes through the origin in n-space, independent
of the particular points used to define the planes. The relations depending on
correlations must also be invariant under rotations of the n-space about the origin,
since the correlations are cosines of angles at the origin, which are invariant under
rotations. We shall therefore suppose for simplicity that the axes have been rotated
in such a way that the first two of them lie in the plane of the observations on one
pair of variates, and contain the observation points for this pair. We shall suppose
further that all the observation points are at unit distance from the origin, so that
the sum of the squares of the observations on each variate is unity. None of these
assumptions reduces the generality of our results. The matrix of observations now
takes the form

Xy X3 X3 Xa X ... @Xn

Yi Y2 Ys Ys Y5 ... Y a2
1.0 0 0 0 ... 0 | .
010 0 0 ..0

The determinant D of the correlations among the four variates is the deter-
minant of sums of squares and products, since each sum of squares is unity.
Hence, by Section 2, D is the sum of the squares of the four-rowed determinants
in the matrix (12'7). But all these determinants are zero except those containing
the first and second columns. The determinant consisting of the first, second,
ith and jth columns equals #;y; — #;y;. Defining this as p,;, we obtain the result

D='P? roooeiieeeeeeeeene, (12°8),

where X’ denotes summation from 3 to n with respect to ¢, and from ¢+ 1 to » with
respect to j. It is further evident from (12'7) that the determinants of correlations
within the sets are

=Spit B=1 oo, (12:9).

T12 1

The equation (3'6) for the canonical correlations of the sample is

A Aryg T3 714
A?'lz A T3 To4
=0 vveiiiiiiiiiin, 12:10).
718 Tes A Argg ( )

714 794 A7'34 A
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The coefficient of A* in this equation is 4B =Zp,2 The term independent of A is
the square of the sum of the products of the determinants in the first two rows
of (127) by the corresponding determinants in the last two rows. The latter
determinants, however, are all zero but the first; hence the constant term in the
equation is pi®. The coefficient of A*> may be obtained by putting A =1 in the left
member of (1210) and subtracting the coefficient of A% and the constant term.
This coefficient is therefore equal to

D~ AB - p1?=—Zp;,? - Zpy;,

where X denotes summation with respect to ¢ from 1 to n. We recall in this
connection that (122) shows that p,;=0. The equation may thus be written in
terms of alternants

MEp =R (D +Pud) + P12 =0, (12:11).

If we regard this as a quadratic equation in A% the roots are 7% and »,%. Hence,
from (11°'5) and the expressions for the coefficients in terms of the roots,

¢ = z2=1— Z (pi +po®) =i _ E'pi?
Zpyt Y Zp,*

It we adopt the further convention (12-6), which by (129) is seen to be equivalent
to assuming that the first pair of variates has been reduced by an internal trans-
formation so that the correlation is zero, (12:11) and (1212) simplify to

Mo XE (D2 + Pod) + Pra2= 0., (12:13),
G=4Przy 2= Z PP, (12:14).

©J

If we do not specialise one of our planes with reference to the coordinates, but
take its alternants as g;;, while those of the other are p;;, it is easy to see in the
foregoing manner, or from Section 4, that the vector correlation is

q= —z’;ﬁﬁf—m ........................... (1215).
V(Zp®) (2g:°)

This has the form of the ordinary formula for a correlation coefficient, or of the

cosine of an angle. From the latter fact comes the following conclusion, which is of

the utmost importance for our purposes.

Let us take the alternants p,; for which ¢ < j as Cartesian coordinates in a space
n(n—1)
of 3

and (12'6) hold. Then V is a curved space of 2n—4 dimensions, in which all the
equations (12:3) hold, since they follow from (12'5). The points of V are in one-to-
one correspondence with the planes through the origin in n-space. A property of
this correspondence which we shall use is that it is metrical, in the sense that any
rotation of the n-space about the origin engenders a transformation of V" which is
also a rotation. This fact follows from (12:15), which shows that ¢ is the cosine of
the angle at the origin between lines extending to points of V representing two
planes. Under a rigid rotation of the n-space, the correlations defining ¢ are all

dimensions, and denote by ¥V the subspace in which the equations (125)
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invariant, so that ¢ is invariant. Hence the points of V representing the rotated
pair of planes are exactly as far apart as the points representing the planes in their
original position, since all these points are, by (12'6), equidistant from the origin.
Thus the transformation of V satisfies the definition of a rotation.

13. The Bivariate Distribution for Complete Independence (s=t=2, n=4). If
there is complete independence of one pair of variates from another, p; =p,=0.
We may without loss of generality regard the internal correlations also as zero.
The planes corresponding to a sample from a normal distribution are then deter-
mined by lines drawn through the origin in n-space at random, in the sense that
the probability of a line meeting any region on a surrounding sphere is proportional
to the generalized area of the region. The chance selection of a plane in this way
is equivalent to the selection of a point in V in such a way that the element of
probability is proportional to the volume element. For, since any plane through
the origin in n-space can be rotated into any other, any point in ¥V can be rotated
into any other, and will carry with it in this rotation its probability density, which
must therefore be uniform over the whole of V. Thus all problems of finding
distributions of statistics calculated from the pairs of variates in such a way as to
be invariant under internal transformations reduce to purely geometrical problems
of finding the (2n — 4)-dimensional volumes of the corresponding regions in V.

The distribution of ¢ and 2, or of r; and rp, will be deduced with the help of
methods of parametric representation resembling those previously applied by the
author to other statistical problems*. First we take the case n=4. In the six-
dimensional space in which the alternants are Cartesian coordinates, V is then a
curved four-dimensional space having the equations

P12Pss — P13Paa + PraPas =0, P1o® + P1a® + pra® + Pas® + pas® + pai=1

It follows that V may be defined in terms of four parameters a, B, v, § by means
of the equations
pu= % (sinasin B+ sinysin J)
Pes= % (sin e¢sin B — sin v sin §)
Pu= %(cosasinB+cosysind) | (13-2)
P2 = — % (cosasin B — cos  sin &)
pra= %( cos B + cos 8)
pa= 3 cos B — cos 8)
since these equations satisfy both the equations (13'1). All points of V are included

when we allow @ and v to vary from 0 to 27, and B and 8 from 0 to 7. The element
of volume in V' is of course

Vg dadp dyds,

¥ ¢«“The Distribution of Correlation Ratios Calculated from Random Data’’ in Proceeaings of the
National Academy of Sciences, Vol. x1. (1925), pp. 657—662; *‘The Generalization of Student’s Ratio’’
in Annals of Mathematical Statistics, Vol. 11. (1981), pp. 360—378; **The Physical State of Protoplasm,’’
loc. cit.

Biometrika xxvin 24
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where g is the sum of the squares of the four-rowed determinants in the matrix of
partial derivatives of the p,; with respect to @, B, y and 8. These derivatives are
the halves of the elements of

cosasinB cosasinB —sinasinB sinesin B 0 0
sinaecos3 sinacosB cosacosB —cosacosB —sinB —sin B
cosysind —cosysind —sinysind —sinysind 0 0
sinycosd —sinycosd cosycosd cosycosd —sind +sind

The sum of products of corresponding elements in edch pair of rows of this matrix
is zero ; the sums of squares are respectively 2 sin? 8, 2, 2sin?§, and 2, each of which
sums must be divided by 4. Thus in accordance with Section 2 we have

g = {5 sin?Bsin®$,
so that the volume element in V is
}sin Bsin8dadB dydd, or }d (cosB)d (cos8)dady.
From this it follows, if we put
E=cosB, E=co88 ....ooviviiiiiiiiiniins (183),

that £ and & are independently distributed with uniform density between —1
and 1. If we take ¢ to have the sign of pis, and 4/z to have that of ps, we have,
from (12:14), (13-2) and (13'3),

g=pu=34(E+¢) Ve=pu=3}(E-¥¢),
whence €=q+ 7 E=q— 2

These relations show, because they are linear, and since points of coordinates (¢, £)
are uniformly distributed in the square £ = + 1, £ = + 1, that points of coordinates
(g, #/2) are uniformly distributed in the square bounded by the four lines

gtz=1+#1
If we restrict g and 4/z to positive values, their distribution will be
2dqda/z,

within the triangle bounded by the coordinate axes and the line ¢+4+/2=1 The
distribution of ¢ and z is therefore

Zhdadg ..o (13+4),
subject to the limitations that both are positive, and that
2<(1= @) oo (13°5).

If we integrate (13:4) with respect to ¢ or z we obtain Wilks’ distribution (11'3)
of 2, or the distribution (11°1) of g, respectively, for the case s=¢=2, n=4.

We may regard (e, 8) and (y, &) as the spherical coordinates of two points on a
sphere in 3-space. The equations (13'2) thus establish a correspondence having
metrical properties between planes through a point in 4-space and pairs of points



HaroLp HoTELLING 371

on an ordinary sphere. In this representation ¢ appears as the mean distance of
the two points from a fixed plane, while 4/z is half the difference of the distances
from this plane. From the theorem of Archimedes that the area of a zone depends
only on the distance between the bounding planes and the radius of the sphere
(which in this case is unity), it is therefore evident that when z is fixed the distri-
bution of ¢ is of uniform density, confirming (13-4).

Let us call r the cosine of the angle between the two lines determining our
variable plane in 4-space. The distribution of r, which is the sample correlation
between two really uncorrelated variates, is readily seen geometrically, or by putting
n=4 in the general distribution of such sample correlations, to be

2
_ — -é
(I —r¥zdr.

Moreover, this distribution is independent of that of q and 2, since » depends only
on the angle within the plane, and g and z on the plane itself Consequently the
joint distribution of the three is, for n =4,

% (I =¥tz ddrdedg...ccccvveeiniiii . (18°6).

This result and the following theorem will be used in Section 15 in extending the
distribution to a general value of n.

14. Theorem on Circularly Distributed Variates. The sum or difference of two
varlates distributed independently and with uniform density over a particular range
is known to have a distribution represented by an isosceles triangle whose base has
double the breadth of the original range. If however each value of the sum or
difference is reduced with the original range as modulus—that is, is replaced by
the remainder after dividing by the range—the resulting distribution is exactly
the original one, with uniform density over the same range. This is a special case
of the following rather remarkable

THEOREM : If any number of variates are distributed independently and with
uniform density from 0 to a, then any linear function of these variates with wntegral
coefficients, when reduced modulo a, is likewise distributed with uniform density Jrom
0 to a. Any number of such functions, if algebraically independent, are also inde-
pendent in the probability sense.

The truth of this theorem becomes evident when we regard each set of vatues
of the variates as a point in a space having the metrical properties of a hypercube
of as many dimensions as there are variates, but with a topological nature deter-
mined by making each pair of diametrically opposite faces of the hypercube
correspond to a single region of the space. The space is thus a closed manifold
generalizing a torus in its topology, but not contained in a euclidean space, because
of its metrical nature. For two variates this representing space would be approxi-
mated by a torus obtained by revolving a very small circle about a very distant
line in its plane. Another representation in this case would be by means of the

242
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squares of side a into which a plane is divided by two sets of parallel lines, all
points occupying a particular position within their respective squares being regarded

as identical. If we call the variates, or coordinates, x;, @3, ..., %, the linear
functions
m
y’i= 2 aﬁﬂcj (7:=]., 2, ceey k) ..................... (14.1),
i=1

in which the coefficients a,; are positive or negative integers or zero (but are not
all zero for any value of 7), are constants over loci which, on the representation on
a plane or flat space of m dimensions, are parallel lines, or hyperplanes of m —1
dimensions. In the space itself, in which only one point corresponds to each set of
values of the variates other than 0 and a, the loci (14:1) are closed curves, or closed
hypersurfaces, because the coefficients are integers. It is obvious that the volume
in this space contained between y; =0 and y;=c must, on account of the homo-
geneity, be proportional to b — c.

If the k linear functions (14:1) are linearly independent, the loci obtained by
giving each y, a succession of constant values differing consecutively byg, where

p is an integer, will divide the space into congruent parallelepipedons. If £—1 of
the ¥, are constrained to lie in certain of these intervals, the representing point is
merely constrained to lie in a certain layer. Since all such layers must be congruent,
the distribution of the kth of the y,, reduced modulo a, is not affected by this
constraint. Hence all the variates thus reduced are independent.

15. Generalization of Section 13 for Samples of Any Size. No direct extension
to a larger number of dimensions of the method of using alternants in Section 13
appears to lead in any simple fashion to the generalization of the distribution there
found. This generalization will however be obtained with the help of hyperspherical
coordinates in the space of the observations.

On account of the spherical symmetry of the density distributions in n-space in
the absence of true correlation, our distributions will not be affected if we assume
the two points of coordinates (zy, ..., #») and (¥1, ..., ¥») to be taken independently
at random on a unit sphere about the origin in n dimensions, in such a way that
the element of probability for each is proportional to the element of (n — 1)-dimen-
sional area on this hypersphere. If we define the hypersphere parametrically by the
equations

@y =sin By sin b,

2y =cosB;sin b,

zy = cos 8, cos Oy

Ty = cos 05 sin 05 cos 6, L (151),
Tp1 = cos 0,sinf;...sinf,_5cos 0,

z, = cosfysinf3...sin0,,_,sinf,_;

(0<0y,0,1<27; 0<Oa<m/2; 0<05,0,,...,0,_2<m)
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which satisfy £az?=1 identically, then the element of (n —1)-dimension~l area for
the z-point may be written

\/§d01 02 . dﬁn_l,

where g is a determinant of n — 1 rows, in which the element in the ¢th row and jth

column is
2 0%, 0%
a§1 _ayl ETOZ]. .................................

All these quantities are readily seen from (15°1) to vanish except those for which
t=j. The successive diagonal elements of ¢ are

sin?f,, 1, cos?f,, cos?Oysin?0;, ....
Hence the element of generalized area may be written
sin 0, cos® 3 By sin® 4 03 5in"56,...sin 0, _, d6, d0,...dO,_; ...... (15°3).
In the same way, if we put

Y1 =sin ¢y sin ¢

Y2 = COS ¢y SIn ¢y '
Ya=  cosgpcosdy o, (154),
Yg= COS ¢hy SIN ¢y COS Py
Yn= cos ¢y Sin Py sin ¢hy... sin ¢,1_11
the element of probability for the y-point is proportional to
sin Pp cos™ 2 Py sin" A ¢bs ...sin, s dpy de...dp,_y ......... (15°5).

The distribution of the parameters defining the two points is obtained by multiply-
ing (15°3) by (15°5). It is evident that all the quantities 6y, ...,0,_1, ¢y, ..., $,_1 are
independent in the probability sense, since the distribution function is a product
of functions each involving only one of these paramcters.
We now introduce quantities wg, w4, ..., Uy, ¥3, ..., v, defined by the equations
x;=u;co80y, y;=v,c08¢, (E=38,4,....,n). ... (15°6).
The w,;, by (151), are functions only of 6, 6,, ..., 6,_; and the v;, by (154), are
functions of ¢, ..., ¢,_1. The u; and v; may be regarded as Cartesian coordinates of
two points on a sphere in space of n— 2 dimensions, these points being taken
independently of each other and of the values of 6, 05, ¢; and ¢,, with the element
of probability proportional to the element of (n — 3)-dimensional area. If we denote
the angle between these points by A (0 <A <), it is evident that the distribution

of A is proportional to
SIN?™AAdA 157),

and is independent of 6y, 0,, ¢; and ¢,.

Let r be the cosine of the angle subtended at the origin in the n-dimensional
space by the z- and y-points. Since
UgVg+ .o F ULV =COSA i, (158),
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it is evident from (15'1), (15+4), (15'6) and (15°8) that
7= Zzy = cos (0 — ¢1) sin O sin o + cos A cos Oz cos ¢s......... (15°9).

The sample values of the variates of the second pair may in the absence of
correlation in the population be represented by an arbitrary pair of fixed lines; we
shall represent them by the first two coordinate axes. We then have from (12:12)
and (12:1), with the help of Section 2,

2_ (212 — 2271)? s Xt Ty? - (Tay)?
U= S@sf—Say) ° 7 TSy — (Say)
where X denotes summation from 1 to n, and X’ from 3 to n. These expressions

become, upon substitution from (15°1), (154), (156), (15-8) and (15°9),

m2 — 2 6, sin2 2 2 in2
gi= sin2 (6, qil)_s:zl 0, sin? ¢, = cos? 0, ;o_s- ;22 sin®A (1510).
To simplify the notation we shall replace 0, and ¢, simply by 6 and ¢ respectively.

We shall also put

w=91—-(]51.

Since only the sines and cosines of w will enter into our discussion, we may
regard w as reduced modulo 2. Now 6; and ¢, vary independently and, as is seen
from (15'8) and (15°5), with uniform density from O to 27. Hence their difference
 must, by the theorem of the last section, have a distribution of uniform density
from 0 to 2w. Moreover, since 6; and ¢, have been seen to be independent of 8,
¢ and A it follows that w is likewise independent of them; indeed, w, 6, ¢ and A
constitute a completely independent set. The distributions of 6 and ¢ are
determined by integrating (15:3) and (15'5) between constant limits with respect
to all the variates appearing in them except 6; and ¢, respectively. Combining
with (15°7) the result of this integration and the uniformity of the distribution of w,
we have that the element of probability is of the form

Ky, sin 6 cos™ 3 O sin ¢ cos” 3 P sin" 4 AdOdpdAdw ......... (15°11),

where &, depends only on n. The limits for 0 and ¢ are 0 and g; for A they are 0
and 7; for w they are 0 and 27
In the new notation, (15°9) and (15°10) become
r=coswsinfsing +cosAcosf@cosd ............... (1512),
o sinfwsin®fsin®¢ o sin? A cos? 0 cos? ¢

q'= T2 , 2= Ty e ST
We next consider a transformation to the variates ¢, z, » and w. Without troubling
to compute the Jacobian J of this transformation, we need observe only that it is
independent of n, since the functional relations (15-12) and (15°13) do not involve n.

Substituting in (15:11) from the second of the equations (15:13) we find that the
distribution is of the form

(15:13).

n-3 n-3
kppz 2 (1 =12 2 dqdzdrdw,
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where ¥ does not involve n. Upon integrating this with respect to w between
certain limits depending on ¢, z and r, but not on n, we have the distribution

n-3 n-3
k,2 Wz 2 (1-7%) 2 dgdzdr,
2

which for n=4 must reduce to (13:6). Comparing with (13-6) we have k¥ = oy

Inasmuch as the distribution of » is known to be

)

and to be independent of that of ¢ and 2, we have for the distribution of the latter
two

n-5
hnz 2 dzdg,
where %, depends only on n. Since the integral over the entire range of variation
defined by the inequalities
0<ggl, O0<zgl, z<(1—gq)*
must be unity, the constant &, is readily found. The distribution is
t(n—2)(n—38)2 2 dedq .....ooveiiininl. (1514).
Its form shows that, in the plane of Fig. 1, the loci of uniform density are
horizontal lines.

The distribution of the canonical correlations is determined by (15:14), together
with (11'5), which latter gives

d(g,2) _ o
a (7,1’ 7'2) - 2 (7‘12 722)~

Thus the distribution of the correlations in case of complete independence is

n->5 n -5

(n=2)(n =3) (12 =r2) (1 =m2) 2 (1=72) 2 drydrp...... (15°15).

16. Further Problems. The foregoing treatment of sampling distributions is
obviously incomplete. It would be desirable to have exact distributions, both of
sample canonical correlations and of various functions of them, for cases in which
the canonical correlations in the population have arbitrary values. The coefficients
obtained for the canonical variates have sampling distributions which remain to be
determined. Furthermore, various possible comparisons among different samples
remain to be investigated; for example, there is the problem of testing the signifi-
cance of the difference between vector correlations obtained from different samples.

A generalization of the problem of relations between two sets of variates invariant
under internal linear transformations is that of invariants under such transformations
of three or more sets of variates. A beginning of this theory has been made by
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Wilks in the work previously alluded to; the 2z we have used is only a special case
of a statistic of his, which in general is defined with reference to any number of sets
of variates as a fraction, whose numerator is the determinant of the correlations
among all the variates, and whose denominator is the product of the determinants
of correlations within sets. It is obvious also that the invariants we have discussed,
taken between every two of the sets, are invariants of such a system. An additional
set of invariants will be the roots of the equation in A resembling (3-6), obtained
from the determinant of all the correlations or covariances by multiplying those
between variates in the same set by —A. It is easy to prove with the help of the
theory of A-matrices that the roots and coefficients of this equation are actually
invariants.

A generalization of our work in a different direction would consider invariants,
not under all linear internal transformations, but under a restricted class of these
transformations. For example, a study of the relations of the prices to the quantities
of several commodities might well consider transformations of commodsties, such for
example as the mixing of different grades of wheat, or the combination of raw
materials and labour into finished products. If from quantities ¢i, g, ... of the old
commodities there are formed quantities ¢1’, o', ... of the new, we may, at least
approximately, write

If all the costs and profits of the mixing or manufacturing operation are regarded
as prices of constituents, the value of one set of commodities will equal that of the
other, so that

PS4 =ZPiq; e (16'2),

where the p; are the prices of the original commodities and the p,’ are those of the
products. If we regard (16:1) as a linear transformation of the quantities, there
will be a corresponding linear transformation of the prices, whose coefficients may
be determined in terms of the c;; by substituting (16'1) and

P =Zdypy
in (16:2) and then equating coefficients of like terms. This process shows that
Toydig=08;y, =1ifj=k =0ifj+#k

These equations fully determine the d;; as functions of the ¢;;. The relation is such
that the transformation of prices is contragredient to that of quantities.

An important class of relations between prices and quantities of a group of
commodities would be the class of relations invariant under mixings of the kind
described above. The canonical correlations and their functions, which are the main
subject of this paper, are such invariants. But on account of the restriction that
linear transformations of one set of variates shall be contragredient to those of the

other, there will be additional invariants for this case, which remain to be in-
vestigated.
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Other important problems are connected with the case of equal canonical
correlations, which had to be excluded in deriving the approximate standard errors
in Section 5. If two or more canonical correlations in the population are equal, it
appears that the distribution of the corresponding sample values does not approach
the multivariate normal form. This case is of much practical importance, owing to
the practice of devising tests designed to measure the same character with equal
accuracy. The psychologists’ use of “reliability coefficients,” and of “correlations
corrected for attenuation” has been recognized as unsatisfactory. One symptom of
trouble is that the formula for correlations corrected for attenuation sometimes
gives values greater than unity. A satisfactory treatment of this difficulty should
be possible with the help of the distribution function, when found, of sample
canonical correlations, or of the vector correlation, when in the population the roots
of the determinantal equation are equal



