
Data Mining and Machine Learning Techniques for the Identification of Mutagenicity
Inducing Substructures and Structure Activity Relationships of Noncongeneric

Compounds

Christoph Helma,*,† Tobias Cramer,† Stefan Kramer,†,‡ and Luc De Raedt†

Institute for Computer Science, Machine Learning Lab, University Freiburg, Georges Ko¨hler Allee 79,
D-79110 Freiburg/Br., Germany, and Institute for Computer Science, Technical University Munich,

Boltzmannstrasse 3, D-85748 Garching, Germany

Received November 7, 2003

This paper explores the utility of data mining and machine learning algorithms for the induction of
mutagenicity structure-activity relationships (SARs) from noncongeneric data sets. We compare (i) a newly
developed algorithm (MOLFEA) for the generation of descriptors (molecular fragments) for noncongeneric
compounds with traditional SAR approaches (molecular properties) and (ii) different machine learning
algorithms for the induction of SARs from these descriptors. In addition we investigate the optimal parameter
settings for these programs and give an exemplary interpretation of the derived models. The predictive
accuracies of models using MOLFEA derived descriptors is∼10-15%age points higher than those using
molecular properties alone. Using both types of descriptors together does not improve the derived models.
From the applied machine learning techniques the rule learner PART and support vector machines gave the
best results, although the differences between the learning algorithms are only marginal. We were able to
achieve predictive accuracies up to 78% for 10-fold cross-validation. The resulting models are relatively
easy to interpret and usable for predictive as well as for explanatory purposes.

1. INTRODUCTION

The development of models forstructure-actiVity rela-
tionships (SARs)has a long and successful history in
medicinal chemistry, but applications of SAR techniques for
toxicological effects are still rather sparse. Although the
objectives, the prediction of biological activities from chemi-
cal structures, are closely related, there are fundamental
differences between both application areas.

SAR studies in pharmaceutical research rely typically on
a few (several tens to hundreds) compounds, containing a
basic structure responsible for activity (i.e. they are conge-
neric). Variations in activity are caused by secondary features
(e.g. presence, length or composition of certain side-chains).
In many cases the cellular target (e.g. receptor, active site
of an enzyme) is known, and some information about
biological mechanisms is also available. Based on this
knowledge it is possible to select a limited set of descriptors
for the chemical structures, which might be relevant for the
activities of the investigated compounds.

The situation is much more complicated for the majority
of toxic effects: Many different molecular mechanisms and
cellular targets may be involved in a single toxic effect. As
a consequence, chemicals with very different structures
(noncongenerics) may cause the same toxicological effect.
With such a limited amount of information, the selection of
appropriate descriptors for SAR studies is more or less a
trial and error process.1 In addition many toxicity assays are
rather time-consuming and expensive, especially those which

are considered to have the highest relevance for human health
(e.g. in vivo experiments). Under these circumstances it is
in most cases impossible to perform experiments especially
for SAR studies. Therefore SAR models have to use existing
databases, where the composition and distribution of struc-
tures and activities is far from optimal, because they have
been selected according to different criteria (e.g. production
volumes, results from short-term tests).

Under these conditions the identification of a toxicological
structure-activity relationship is essentially a data mining
problem: The researcher has to identify regularities within
the chemical structures and their toxic activities that allow
the construction of a model that predicts the activity of
untested compounds. More specifically, the data mining task
can be decomposed into two steps:

1. Generation of descriptors for the chemical structures
2. Induction of the SAR model
In the present paper, the use of various data mining

techniques2 for both steps is systematically explored on a
database of mutagenic activities. The goal is to obtain insight
into the utility of such data mining techniques for building
SARs from toxicological databases. Among the data mining
techniques selected, special attention was given to symbolic
machine learning techniques, because they are able to derive
understandable and interpretable models. It is therefore
possible to use the induced models for predictive as well as
for explanatory purposes (i.e. to identify structural features
that may cause a certain toxic effect).

In particular we have investigated the following:
• the utility of a newly developed system for the generation

of molecular substructures (MOLFEA3,4) as compared to
molecular properties calculated by various computational
chemistry programs,
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• the suitability of various machine learning programs for
the generation of mutagenicity SARs from the descriptors
mentioned before and

• the optimization of parameters for these programs, to
identify the optimal conditions for the detection of mutage-
nicity SARs within data sets with noncongeneric compounds.

2. SYSTEM AND METHODS

2.1. Database.The mutagenicity data set was extracted
from the carcinogenic potency database (CPDB) (http://
potency.berkeley.edu/cpdb.html5). The CPDB provides mu-
tagenicity classifications (mutagens and nonmutagens) as
determined by theSalmonella/microsome assay (Ames test6).
Additional information (mutagenic potencies, results in
individual strains, necessity of metabolic activation) is not
available.

The data set contains a very diverse set of chemicals of
predominatly industrial and pharmaceutical origins. A visual
representation of all structures and their mutagencity
classifications can be downloaded from http://www.
predictive-toxicology.org/data/cpdb_mutagens/mutagens.
pdf. Chemical structures came from various sources on the
Internet (see http://www.predictive-toxicology.org/
db_links/). They were converted to SMILES strings,7 checked
for validity, and corrected according to the procedures
described in a previous publication.8 After the elimination
of mixtures and undefined structures, 684 compounds
remained for the experiments.

The whole data set with chemical structures, fragments
for various thresholds (see below), molecular properties, and
mutagenic activities is available from http://www.
predictive-toxicology.org/data/cpdb_mutagens (also see Sup-
porting Information).

2.2. Fragment Generation.To predict the mutagenic
activity of the compounds in our database, we first describe
the chemical structures in terms of substructural fragments.
The fragments are generated automatically from the data set
using the molecular feature miner MOLFEA. MOLFEA is
an inductive database system9 tailored toward discovering
substructures within sets of small molecules. Inductive
databases are databases that can be queried not only for data
but also for patterns and regularities (in our case: substruc-
tures) that occur within the data and fulfill certain user
defined criteria. An example query in our investigation would
be to ask for all substructures that occur with a high
frequency in mutagenic compounds and a low frequency in
nonmutagenic compounds.

More precisely, the substructures considered in the current
version of MOLFEA are linear molecular fragments, i.e.,
sequences of atoms and connecting bonds. An example
fragment would be C-C-c:c:c-O, which stands for two
nonaromatic carbons connected by a single bond, followed
by three aromatic carbons, connected by a single bond to an
oxygen. The language of fragments used in MOLFEA is a
subset of the SMARTS language (http://www.daylight.com/
dayhtml/doc/theory/theory.smarts.html). Please note that the
restriction to linear substructures is not an integral part of
MOLFEA but only represents a starting point for our
investigations.

A query in MOLFEA can be composed of several
conditions, each of which has to be fulfilled in order to make

it a solution fragment. These conditions are expressed in
terms of primitive constraints considering e.g. the syntax of
the fragments or their frequency in different data sets. A
syntactic constraint could e.g. state that the fragments of
interest should be a substructure (or a superstructure) of a
given structure. A frequency constraint requires that the
fragment occurs in at least (respectively at most)x% of the
molecules belonging to a given data set. In the present
investigation we have used only frequency constraints. Hence
we will focus on them while explaining the algorithm of
MOLFEA. More detailed information about MOLFEA can
be found in previous publications.3,4,10

If freq(f, D) denotes the frequency of a fragmentf on a
set of moleculesD, the frequency of a fragmentf in a
databaseD is defined as the fraction of molecules inD in
which f is occurring. In MOLFEA we may pose queries
concerning the minimum and the maximum frequency on
(possibly different) data sets. We may write such queries as
(freq(f, A) < tA)∧freq(f, B) > tB) wheretA andtB are relative
frequencies andA andB are different sets of molecules. This
constraint denotes that the frequency of the fragmentf in
the data setA (e.g. nonmutagens) should be less thantA and
the frequency inB (e.g. mutagens) should be greater than
tB.

To efficiently compute the fragments that satisfy a given
query the generality relation on fragments is exploited. This
is important because it will allow us to prune the space of
possible solutions.

More formally, for linear fragments of molecules, we say
that a fragmentg is more general than a fragments, if and
only if g is a subsequence ofs or g is a subsequence of the
reversal ofs. The fragment c-C (aromatic carbon connected
to an aliphatic carbon) for example is more general than
fragment C-c:c (aliphatic carbon connected to two aromatic
carbons). Whenever a specific fragments occurs in a
molecule it must be the case that all subfragments ofs (i.e.
all fragments that are more general thans, the so-called
generalization) will also occur in the same molecule.

This knowledge is important in the light of the frequency
constraints. Indeed, whenever a fragments satisfies a
constraint of the formfreq(s, D) > t, then all generalizations
g of s will also satisfy the constraint.

This property actually imposes a lower border (called the
S-set) on the space of possible solutions (cf. Figures 1 and
2). S contains all maximally specific fragments that satisfy
the constraint. It is called a border because all fragments
more general than an element ofS will also satisfy the
constraint and all fragments that are not more general than
at least one fragment inS will not satisfy the constraint.
Dually, whenever a fragmentg satisfies a constraint of the
form freq(g, D) < t, then all of its specializations (super-
fragments) will satisfy the constraint as well. This propertys

Figure 1. Example for the version space representation of a
MOLFEA query result.
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in turnsimposes an upper border (theG-set) on the space
of possible solutions.

Now, because of these properties the set of solutions to a
query of the form (freq(f, A) > tA)∧freq(f, I) < tI, A is the
set of active compounds andI is the set of inactive
compounds) can be completely characterized by its two
bordersSandG. Indeed, the first constraint induces the lower
borderS, and the second one induces the upper borderG
(Figure 2). Therefore, all fragments being more general than
a fragment inSand more specific than an element inG will
be solutions to the query. In machine learning terminology,
the solution space is called a version space. Figure 1
illustrates the concept of a version space, whereG ) ){c:
c-c:c} andS ) {c:c:c:c:c:c-c:c:c:c:c:c}.

Because the space of all possible solutions to a conjunctive
query of the formc1∧...cn (ci are individual constraints) is a
version space, and version spaces are completely character-
ized by their border sets, it suffices to compute the border
sets with respect to (wrt) such queries in order to have a
complete characterization of the solution set. This is also
the underlying idea in the MOLFEA system. To compute
the borders wrt a given queryc1∧c2∧...cn, MOLFEA will
incrementally process the constraints from left to right and
update the border sets for eachci correspondingly.

Figure 2 depicts the evolution of the version space for the
conjunction of a minimum frequency and a maximum
frequency constraint (freq(f, A) > tA)∧freq(f, I) < tI). The
initial version space (before processing the first primitive
constraintc1, see Figure 2a) contains all possible fragments.
We write thatG0 ) {T} andS0 ) {⊥}, where T is the most
general linear fragment (that is, the “empty” fragment), and
⊥, by definition, is the most specific linear fragment. [Please
note that the⊥ in the case of linear molecular fragment does
not really exist. It is merely a theoretical construct denoting
a fragment that is more specific than any other fragment.]
Then we process the constraintsci sequentially by looking
for fragments that fulfill the given criteria (the exact
procedure is described below). After each stepci, we obtain
an updatedG and S set, either theG set becomes more
specific, or theSset more general and the set of all solutions
becomes smaller. On the example query (freq(f, A) >
tA)∧freq(f, I) < tI) in Figure 2, the minimum frequency
constraint updatesS(Figure 2b), and the maximum frequency
constraint updatesG (Figure 2c).

Let us now explain the details of the algorithm. To update
the borders a minimum frequency threshold of the form
freq(f, A) > tA, MOLFEA applies algorithm 1 (Figure 4). It
essentially combines the famous levelwise algorithm from

data mining2 with principles of version spaces. The effect
of the algorithm is illustrated in Figure 3. Given a minimum
frequency threshold, theS border will be generalized.

Algorithm 1 works as follows (An example run on a small
data set is depicted in Figure 5): First, those fragments that
do not satisfy the minimum constraint are deleted (as they
cannot contribute to a solution). Second, the elements ofS
are updated using a levelwise search algorithm. This
algorithm keeps track of a list of candidatesCi and a listLi

of solutions to thefreq(f, D) > t) constraint. Both lists are
initialized with the maximally general element T and
iteratively updated. During each iteration, the candidatesf
. a at leveli are computed by refining existing fragmentsf
at leveli - 1. Here,a is an atom and. a bondtype. Because
fragments of the forma . f will not satisfy freq(f, A) > t
whenf does not satisfy this constraint, the algorithm prunes
away the corresponding candidates. Finally, those candidates
that are not more general than the already specifiedSborder
cannot be a solution to the queryc1∧...ci and are therefore
pruned away as well. All remaining candidates are then
evaluated on the data in order to obtain their frequencies.
The frequencies of these candidates are evaluated on the
given data set with the Daylight SMARTS libraries

Figure 2. Evolution of the version space for the conjunction of a minimum frequency query and a maximum frequency query. The solutions
are indicated by the black area. (a) depicts the initial situation, (b) is the solution for the minimum frequency query, and (c) is the final
result for both constraints.G indicates the set of the most general solutions,S is the set of the most specific solutions, the top of the version
space (T) is the “empty” fragment, and the bottom of the version space (⊥) is a hypothetical fragment, that is more specific than all other
fragments.

Figure 3. Level-wise search upward for a minimum frequency
constraint to updateS to S′.

Figure 4. Algorithm 1 for solving minimum frequency queries
(see Figure 5 for an illustrative example).
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(http://www.daylight.com) [OpenBabel http://
openbabel.sourceforge.net is an Open Source alternative.]
Those candidates satisfying the frequency threshold are
retained inFi and used to generate the candidates in the next
iteration. The process is continued until no more candidates
can be generated. At this point, theS set is computed by
taking the maximally specific elements among the solutions
computed that are more specific than an element ofG. The
algorithm for addressing a maximum frequency threshold
of the form (freq(f, D) < t) can be obtained in a dual manner,
it is listed in algorithm 2 (Figure 6).

In summary, MOLFEA is an inductive database for finding
substructures in data sets with molecular structures. The two
most important features are (1) the possibility of querying
for patterns (fragments) in sets of compounds and (2) the
organization of solution fragments in version spaces, that
is, by storing the most general and the most specific solution
fragments only.

2.3. Molecular Properties. Initial three-dimensional
structures were calculated by the rule-based program
CORINA.11 Semiempirical quantum mechanical optimiza-
tions with the MNDO-PM3 Hamiltonian were performed
with MOPAC (http://www.ccl.net/cca/software/LINUX/
mopac7/README.shtml) to refine structures and calculate
energetic and electronic properties. Lipophilicity (logP) was
calculated with KOWWIN,12 hydrophilic and lipophilic
surface areas by NACCESS http://wolf.bms.umist.ac.uk/
naccess/. All format conversions were done by Babel http://
openbabel.sourceforge.net/.

2.4. Machine Learning.We compared in our experiments
three machine learning algorithms in their implementation
in the Weka workbench:2 The decision tree learner C4.513

in the Weka implementation (J48), the rule learner PART,14

and support vector machines (SVM).15

C4.513 is a classical decision tree algorithm. The algorithm
is designed to construct small trees with the most relevant
attributes near the root. C4.5 is known to perform well over
a wide range of learning tasks and data sets. The advantages
(fast performance) and disadvantages (fragmentation of cases
into various subtrees and replication of tests in subtrees) both
stem from the tree representation. Regarding comprehensibil-
ity, decision trees are in principle interpretable, but experts
often tend to prefer rule sets over decision trees.

PART14 is one of the best performing rule learning
algorithms available. It differs from conventional rule
learning schemes in that it does not require a separate,
complex optimization stage, where the rule set is tuned after
the induction of individual rules. Rules are perhaps the most
popular representation of models in machine learning, since
they can readily be interpreted by domain experts. On the
negative side, comprehensibility comes often at the expense
of predictivity, and rule learners are usually computationally
more expensive than decision tree learners.

Support vector machines15 are linear classifiers that map
the input space of the learning examples implicitly into a
higher-dimensional feature space using a Kernel function.
In the feature space, the examples (e.g. mutagenic and
nonmutagenic compounds) are separated by a decision
boundary. The SVM algorithm looks for the decision
boundary that provides the best separation between both
classes. SVMs have the advantage that the risk of overfitting
is reduced and that they are able to model very complex
decision boundaries. The disadvantage is that they are hard
to interpret in the case of nonlinear Kernel functions (e.g.,
polynomial Kernels of degree greater than one). Also, the
proper choice of a Kernel function and parameter settings is
far from obvious.

2.5. Validation. 10-Fold cross-validation was used to
validate the results of machine learning experiments. This
means that the whole data set is divided into 10 parts. One
part is removed as a test set, the remaining 9 parts are the
learning set for the model. Predictions from the model for
the test set are compared with the real values from the test
set to estimate the predictive accuracy. The whole process
is repeated 10 times, so that each part has served once as a
test set and predictions for all compounds in the data set are
available. For each validation run we report accuracy,
sensitivity, and specificity using the definitions of Table 1.

Figure 5. Version space and results for the MOLFEA queryfreq(f,
A) g 2.

Figure 6. Algorithm 2 for solving maximum frequency queries.
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3. RESULTS

The experiments were organized as follows:
The first experiment described chemical structures in terms

of MOLFEA generated fragments and used three machine
learning algorithms (C4.5, PART, SVM) to learn SAR
models. To identify relevant fragments we used the MOLFEA
query (freq(f, mutagens) g t)∧freq(f, nonmutagens) e t),
i.e., we were looking for fragments that occur more thant
times in mutagenic compounds and less thant times in
nonmutagenic compounds. The complete version spaces of
four frequency thresholds were used in our experiments: 0.01
(1%, 6 compounds), 0.03 (3%, 20 compounds), 0.05 (5%,
34 compounds), and 0.10 (10%, 68 compounds); the
complete data set contained 341 mutagenic and 343 non-
mutagenic compounds.

The machine learning algorithms were used with their
default settings in the WEKA-Workbench. Support vector
machines were used with a linear and quadratic kernel. The
results of these experiments are summarized in Table 2.

In the next step we tried to improve and correct the
chemical structures. Although we are using only linear
fragments, it is important to obtain a consistent representation
(e.g. in respect to aromaticity, protonation status, tautomers,
...) of all molecules in the training set to obtain correct results.
As a manual inspection of structures is very error-prone and
basic quality checks8 have been done already on the initial
structures, we performed semiempirical quantum mechanical
optimizations (which was also needed for the calculation of
molecular properties). Although the optimizations were

performed in the gas phase and 3D structures were converted
back to 2D for fragment generation, we hoped that this
procedure would give a more consistent representation of
the compounds than the original data set (e.g. in respect to
aromaticity, protonation status, tautomers, ...). The parameters
for fragment generation and machine learning were identical
with the first experiment, and the results can be found in
Table 3.

In the third experiment we developed SARs using mo-
lecular properties (Table 4) alone. As our implementation
of support vector machines had performance problems with
this type of data (real numbers instead of binary fragment
fingerprints), only C4.5 and PART were applied to learn the
models. The results are summarized in Table 5.

The final step was to use both fragment data and molecular
properties. Again, C4.5 and PART were used for the machine
learning experiments. Tables 6 and 7 summarize the results;

Table 1. Definition of Variables for 10-Fold Cross-Validationa

actual value

mutagen nonmutagen

mutagen TP FP predicted
nonmutagen FN TN value

a TP: true positives. FP: false positives. TN: true negatives. FN:
false negatives.C: correct predictions (TP+ TN). A: all predictions
(TP + FP+ TN + FN). Accuracy: C/A, i.e., the percentage of correct
predictions. Sensitivity: TP/(TP+ FN), i.e., the proportion of mutagens
that are correctly predicted. Specificity: TN/(TN+ FP), i.e., the
proportion of nonmutagens that are correctly predicted.

Table 2. Performance of SAR Models forSalmonellaMutagenicity
Using Fragments from Unoptimized Structuresy

threshold algorithm
training set
accuracy

mean
accuracy

cross-
validation

mean
sensitivity

mean
specificity

0.01 J48 86.6959 75.0000 0.749 0.750
0.03 J48 86.9883 75.1462 0.746 0.756
0.05 J48 86.4035 77.0468 0.740 0.800
0.10 J48 82.4561 74.7076 0.755 0.739
0.01 PART 90.9357 77.4854 0.769 0.780
0.03 PART 88.8889 72.6608 0.720 0.733
0.05 PART 88.3041 76.3158 0.772 0.753
0.10 PART 84.5029 73.6842 0.743 0.730
0.01 SMO,E1 95.3216 77.6316 0.784 0.768
0.03 SMO,E1 86.5497 76.9006 0.778 0.759
0.05 SMO,E1 85.6725 77.4854 0.778 0.771
0.10 SMO,E1 77.7778 72.2222 0.708 0.736
0.01 SMO,E2 98.6842 75.1462 0.749 0.753
0.03 SMO,E2 97.0760 73.8304 0.743 0.733
0.05 SMO,E2 95.9064 73.3918 0.725 0.741
0.10 SMO,E2 91.2281 72.5146 0.725 0.724

Table 3. Performance of SAR Models forSalmonellaMutagenicity
Using Fragments from MOPAC Optimized Structures

threshold algorithm
training set
accuracy

mean
accuracy

cross-
validation

mean
sensitivity

mean
specificity

0.01 J48 86.8421 75 0.714 0.785
0.03 J48 87.4269 73.3918 0.720 0.747
0.05 J48 86.9883 75.8772 0.743 0.774
0.10 J48 82.6023 73.9766 0.734 0.744
0.01 PART 91.3743 73.6842 0.731 0.741
0.03 PART 90.3509 74.1228 0.755 0.727
0.05 PART 89.1813 74.7076 0.720 0.774
0.10 PART 86.4035 72.076 0.708 0.733
0.01 SMO,E1 95.3216 76.6082 0.752 0.780
0.03 SMO,E1 86.8421 74.269 0.746 0.739
0.05 SMO,E1 85.0877 78.5088 0.775 0.794
0.10 SMO,E1 77.4854 73.6842 0.743 0.730
0.01 SMO,E2 98.6842 76.462 0.763 0.765
0.03 SMO,E2 96.9298 74.5614 0.731 0.759
0.05 SMO,E2 95.7602 73.538 0.725 0.744
0.10 SMO,E2 91.3743 72.5146 0.725 0.724

Table 4. Molecular Properties Used in SAR Models forSalmonella
Mutagenicity

parameter program

accessible surface (all atoms) NACCESS
accessible surface (nonpolar atoms) NACCESS
accessible surface (polar atoms) NACCESS
dipole MOPAC
electronic energy MOPAC
electronegativity MOPAC
heat of formation MOPAC
HOMO MOPAC
(HOMO - LUMO)/2 MOPAC
hybridization dipole MOPAC
ionization potential MOPAC
largest interatomic distance MOPAC
logP KOWWIN
LUMO MOPAC
molecular weight MOPAC
point charge dipole MOPAC
total energy MOPAC

Table 5. Performance of SAR Models forSalmonellaMutagenicity
Using Molecular Properties

algorithm
training set
accuracy

mean
accuracy

cross-validation
mean sensitivity

mean
specificity

J48 82.1637 63.1579 0.699 0.563
PART 71.7836 64.6199 0.731 0.560
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Table 6 uses the original structures for fragment generation,
whereas Table 7 uses optimized structures.

4. DISCUSSION

4.1. Performance.The first question under investigation
was whether molecular properties or molecular fragments
are better descriptors for mutagenicity SARs with noncon-
generic compounds. A comparison of Table 5 with Tables 2
and 3 clearly indicates that models based on molecular
fragments give much more accurate predictions (up to 28%
above default) than models based on our set of molecular
properties (up to 14 above default). It is of course possible
(and quite likely) that we did not choose the “correct” set of
molecular properties that are relevant forSalmonellamu-
tagenicity. [Please note that the machine learning techniques
in our investigation are, at least theoretically, robust towards
correlated and unnormalized data.] Under practical circum-
stances it is however impossible to determine the relevant
properties a priori, because of the complexity of the involved
biochemical processes.

Although our set of molecular properties is less useful than
molecular fragments, they might provide information, which
can be used in conjunction with fragments. Therefore we
performed a set of experiments using both types of descrip-
tors. The results are summarized in Tables 6 and 7.
Comparing them with Tables 2 and 3 shows that there is no
dramatic improvement in terms of predictive accuracy in the
cross-validation experiments. In fact, the highest accuracies
were obtained with fragments alone. It is interesting to note
that the accuracies on the training set are generally higher
with molecular properties, which indicates an overfitting of
the data. It is also possible that the addition of molecular
properties provides only redundant data. Many global

properties are influenced by the presence of certain sub-
structures, which might be already represented by one of
the fragments. The calculation of logP, for example, checks
for predefined substructures to calculate the overall value
for the whole molecule.12 Although quantum-mechanical
optimizations do not consider substructures, the presence of
certain structural features influences electronic properties
implicitly.

Summing up, our experiments indicate that accurate
mutagenicity SAR models can be generated from molecular
fragments alone. If this holds true for other toxic endpoints,
then further molecular properties have to be clarified by
further investigations.

The next question was if semiempirical quantum mechan-
ical optimizations help to obtain a more consistent repre-
sentation of chemical structures and improve the derived
SAR models. The results are ambiguous: Although the
highest predictive accuracies (78.5%) were obtained with
MOPAC optimized structures, the overall picture is different.
In 8/16 cases unoptimized structures gave better results, in
6/16 cases optimization gave an improvement (mainly for
support vector machines), in 2/16 cases the accuracies were
identical. Generally the difference between both models is
only a few percentage points. Considering the computational
overhead for quantum mechanical calculations and the
possibility of introducing errors by format conversions and
nonparametrized elements, it is unlikely that this procedure
improves the performance of the derived SAR models.

We did not obtain a value for the frequency threshold for
fragment generation which is optimal under all circum-
stances. Thresholds of 0.05 gave generally good results in
our case, but we recommend to perform experiments with
new data sets. Frequency thresholds between 0.01 and 0.05
seem to be good starting points.

For the learning algorithm there is also not a single solution
that is optimal in all cases. Most of the times linear support
vector machines and the PART rule learner perform better
than C4.5 and support vector machines with quadratic
kernels. Quantitatively the highest predictive accuracies
(78.5%) were obtained with linear support vector machines
and optimized structures. For unoptimized structures the
performance of PART and support vector machines were
equivalent (77.5%). The differences between algorithms are
generally not very pronounced. The choice of the machine
learning algorithm can depend therefore more on the scope
of the investigation (e.g. prediction of untested compounds,
development of mechanistic hypothesis, computer aided drug
design) than on performance issues.

In all models thesensitiVity (i.e. proportion of correctly
predicted mutagens) andspecificity(i.e. proportion of cor-
rectly predicted nonmutagens) values are very similar. This
indicates well balanced models that are capable of predicting
mutagenicity and nonmutagenicity with a similar degree of
confidence. As the predictive accuracy is substantially higher
than the default guess of the majority class (nonmutagens)
of the database (50.15%) and close to the experimental
reproducibility of theSalmonellaassay (∼85%16) we con-
clude that we were able to extract significant knowledge out
of empirical data.

It is hard to perform a quantitative comparison of our
results with other investigations in this area, because the data
sets are not identical. Table 8 summarizes the results with

Table 6. Performance of SAR Models forSalmonellaMutagenicity
Using Fragments from Unoptimized Structures and Molecular
Properties

threshold algorithm
training set
accuracy

mean
accuracy

cross-
validation

mean
sensitivity

mean
specificity

0.01 J48 93.2749 75 0.734 0.765
0.03 J48 92.5439 73.8304 0.711 0.765
0.05 J48 94.0058 74.4152 0.728 0.759
0.10 J48 90.0585 71.345 0.711 0.715
0.01 PART 95.614 75.5848 0.731 0.780
0.03 PART 94.0058 75.731 0.763 0.750
0.05 PART 95.614 74.269 0.749 0.736
0.10 PART 96.0526 71.7836 0.734 0.700

Table 7. Performance of SAR Models forSalmonellaMutagenicity
Using Fragments from MOPAC Optimized Structures and
Molecular Properties

threshold algorithm
training set
accuracy

mean
accuracy

cross-
validation

mean
sensitivity

mean
specificity

0.01 J48 92.9825 75.4386 0.720 0.788
0.03 J48 93.5673 73.8304 0.723 0.753
0.05 J48 92.8363 72.6608 0.702 0.750
0.10 J48 90.6433 73.2456 0.714 0.750
0.01 PART 95.0292 74.5614 0.737 0.753
0.03 PART 94.2982 72.807 0.725 0.730
0.05 PART 95.3216 74.1228 0.766 0.715
0.10 PART 96.345 74.5614 0.731 0.759
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noncongeneric mutagenicity data from the literature. It
indicates clearly that the quantitative performance of our
models is at least competitive with the best published results
so far.

4.2. Comparison with Other Fragment Based Ap-
proaches.At a first glance our strategy may seem to be very
similar to the CASE19 and MULTICASE20 programs from
Gilles Klopman and the reimplementations of the same
concept by Malacarne et al.21 In fact we derived a lot of
inspiration by this pioneering work, but from the computer
science point of view, there are substantial differences that
we want to discuss briefly:

Both CASE and MULTICASE are monolithic programs
that integrate Fragment Generation and Prediction. We could
not find any detailed information about the fragment genera-
tion algorithm in the literature, but we assume that the
procedure is similar in both programs. CASE/MULTICASE
fragments are in principle linear, but they support some
branches at their backbone. The classification algorithm
makes both programs different: CASE uses a Bayesian
approach to aggregate the contributions of all fragments,
whereas MULTICASE employs a more structured divide-
and-conquer strategy to distinguish between major biophores
that provide a primary classification and modulators (proper-
ties and fragments) that are capable to up- and downregulate
the activity of the primary biophore.

We use in contrast a flexible modular strategy and different
algorithms: descriptor generation and classification are
completely decoupled, and it is possible to use various
techniques for both of the steps. For feature generation we
have investigated as a starting point linear fragments and a
few molecular properties, but there are a lot of further
possibilities. Apart from MOLFEA extensions to 3D-
fragments22 and arbitrary substructures that are currently
investigated it is possible to use all kinds of chemicals
descriptors from computational chemistry23 as well as
predefined structural features (e.g. structural alerts24). In
principle it is even possible to use spectroscopic data or
biological activities (e.g. from surrogate assays) to character-
ize chemicals.

The classification step is also extremely flexible. For this
study we have selected three techniques (C4.5, PART, and
SVMs) that seemed to be particularly promising for our
purpose, but this is not the only possibility. Depending on
the scope of the study (and personal preferences) it is possible
to choose from a variety of statistical (e.g. multiple linear
regression, principal component regression), probabilistic
(e.g. naive Bayes), or connectionist (e.g. neural nets)
techniques for the classification of new instances and/or the
prediction of biological activities (e.g. LC50’s, EC50’s).

4.3. Interpretation and Application of SAR Models. As
an illustration how to interpret and use SAR Models from

data mining and machine learning experiments, we will use
the model created by linear support vector machines from
fragments with a threshold of 0.05 as an example.

Figure 7 lists the 20 most important fragments contributing
to mutagenicity, and Figure 8 lists the 20 most important
fragments indicating nonmutagenicity. The total number of
attributes in this SAR model is 171. Each relevant fragment
has an associated weight factor, which may be positive (i.e.
the fragment contributes to mutagenicity, biophores in
CASE25 terminology) or negative (i.e. the fragment reduces
mutagenicity, biophobes in CASE25 terminology). [In our
model we did not consider fragment frequencies in mol-
ecules, so fragments are either present (1) or absent (0) in a
given compound.] To make a prediction for a new com-
pound, it is necessary to generate the fragments for this
molecule, to look for the weights associated with the presence

Table 8. Performance of SAR Models forSalmonellaMutagenicity
Reported in the General Literature

author citation method
mean

accuracy (%)

Perotta et al. 17 73.9a

Klopman and Rosenkranz 18 CASE 72
Klopman and Rosenkranz 18 MULTICASE 80
Klopman and Rosenkranz 18 CASE/GI 47

a Leave-one-out validation.

Figure 7. The 20 strongest activating fragments forSalmonella
mutagenicity derived from linear support vector machines. Frag-
ments are written in SMARTS notation: uppercase letters: aliphatic
atoms, lowercase letters: aromatic atoms, - single bond, : aromatic
bond,) double bond; baseline value:-0.24.

Figure 8. The 20 strongest deactivating fragments for bacterial
mutagenicity derived from linear support vector machines. Frag-
ments are written in SMARTS notation: uppercase letters: aliphatic
atoms, lowercase letters: aromatic atoms, - single bond, : aromatic
bond,) double bond; baseline value:-0.24.
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of these fragments, to sum them up, and add them to the
baseline value (-0.24). The resulting value is used to predict
the mutagenic activity: positive values indicate mutagenicity,
negative values indicate nonmutagenicity. This means that
the presence of one or more activating fragments is not a
sufficient criteria for mutagenicity. Activating fragments may
be compensated by inactivating fragments and vice versa.

Table 9 gives a few examples of how to interpret some of
the fragments in this model in a chemical context. As this
requires some experience it is often advantageous to match
interesting fragments on chemical structures visually (using

e.g. the Daylight’s depictmatch web interface http://http://
www.daylight.com/cgi-bin/contrib/depictmatch.cgi). Figure
9 for example depicts all mutagenic molecules that contain
the strongest activating fragment c:c:c:c:c:c:c:c:c of our
model. The areas where this fragment matches are marked
in yellow.

To demonstrate the practical utility of our approach we
will show with a hypothetical example, how to use the
derived SAR models to modify a mutagenic compound into
a nonmutagenic one. We have randomly selected one
compound from our data set (melphalan, CAS 148-82-3,
Figure 10), and we will use the same model as before. [This
is just a hypothetical example to illustrate the concept. We
do not claim any particular biological or chemical relevance
for this example.]

Figure 10 lists the activating and deactivating fragments
that are found in this compound, together with their weights.
The resulting value is almost equal to 1sa strong indication
of mutagenicity (positive values indicate mutagenicity,
negative values nonmutagenicity). In a first attempt to reduce
mutagenicity we can remove two chlorines (the most
important contributers to mutagenicity in this compound),

Figure 9. Mutagenic compounds containing the fragment c:c:c:c:c:c:c:c:c. Atoms matching this fragment are marked in yellow.

Table 9. Interpretation of Example Fragments

fragment interpretation

c:c:c:c:c:c:c:c:c 9 connected aromatic carbons, indicates
condensated aromatic ring systems

C-Cl chlorinated aliphatic carbon
Cl-C-Cl dichlorinated aliphatic carbon, compensates

the effect of C-Cl
C-N-c:c aliphatic carbon attached via nitrogen to a

carbon in an aromatic system
c:c:c:c:c:n aromatic system with 5 carbons and 1 nitrogen

(usually pyridine)
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leading to the second structure in Figure 10. This causes a
substantial drop of the predicted value to 0.007. As this value
is very close to zero, we cannot make a very reliable
prediction, but because of the positive value we will still
have to classify this compound as a mutagensalthough with
low confidence. As a next step, we may want to change the
carbonyl group to an aldehyde. This leads to the third
structure in Figure 10 with a predicted value of-0.57s
probably a nonmutagen.

In a similar spirit we can add some of the deactivating
structures from Figure 8 to remove mutagenic activity. The
application of this concept under real world conditions is a
bit more complicated, because it is necessary to conserve
(or improve) structural features, that are responsible for
desired (e.g. pharmacological, ADME) effects. If we have
several SAR models for different endpoints, it is possible to
combine them with a scoring function, that considers the
balance between (desired and undesired) effects.

5. CONCLUSION

With this investigation we have demonstrated the utility
of the inductive database MOLFEA for the generation of
descriptors for SAR studies with mutagenic compounds.
These descriptors can be used e.g. by machine learning
techniques to create reliable SARs for noncongeneric com-
pounds. We have further demonstrated how to interpret and
use SAR models induced by support vector machines in a
practical context.

Initial experiments with other endpoints indicate that a
similar procedure can be used for other data sets as well,
but a definitive answer requires more experiments with
diverse data sets. We are presently extending the MOLFEA
framework for the identification of three-dimensional frag-
ments22 and arbitrary substructures (graphs) within molecules.
This should enable us to deal more efficiently with receptor
interactions and stereochemistry. As soon as more public data
from toxicogenomics, -proteomics, and -metabolomics ex-
periments become available it will be possible to include
more biological information in SAR studies. This is also an
open research issue, but the reward will be models that
consider individual susceptibilities than models based on
present data.
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