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Methods for predicting protein function from structure are becoming more
important as the rate at which structures are solved increases more rapidly
than experimental knowledge. As a result, protein structures now
frequently lack functional annotations. The majority of methods for
predicting protein function are reliant upon identifying a similar protein
and transferring its annotations to the query protein. This method fails
when a similar protein cannot be identified, or when any similar proteins
identified also lack reliable annotations. Here, we describe a method that
can assign function from structure without the use of algorithms reliant
upon alignments. Using simple attributes that can be calculated from any
crystal structure, such as secondary structure content, amino acid
propensities, surface properties and ligands, we describe each enzyme in
a non-redundant set. The set is split according to Enzyme Classification
(EC) number. We combine the predictions of one-class versus one-class
support vector machine models to make overall assignments of EC number
to an accuracy of 35% with the top-ranked prediction, rising to 60%
accuracy with the top two ranks. In doing so we demonstrate the utility of
simple structural attributes in protein function prediction and shed light on
the link between structure and function. We apply our methods to predict
the function of every currently unclassified protein in the Protein Data
Bank.
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Introduction

In earlier work1 we demonstrated that by
representing proteins using simple attributes that
are easily calculable from any crystal structure, it
was possible to predict function as enzymatic or
not. The method did not rely on detecting similarity
to another protein and could be applied to any
protein for which the attributes could be calculated.
Here, we extend this idea down the functional
hierarchy and address the problem of predicting the
enzyme class of a protein that is known or predicted
to be an enzyme.

Our capacity to solve protein structures is not
being matched by our ability to assign function
experimentally. Consequently, many new protein
structures lack functional annotations. The number
lsevier Ltd. All rights reserve

Data Bank; EC,
rt vector machines.
ing author:
of structures with the annotation “Unknown Func-
tion” deposited in the Protein Data Bank (PDB)2

shows that the frequency of this annotation has
nearly trebled on average each year for the past four
years, with six structures in 1999, growing to ten in
2000, then leaping to 52 in 2001, followed by a
further 81 and 183 in the next two years, respect-
ively. Given that Unknown Function is not the only
annotation associated with an undetermined func-
tion, this must be considered an underestimate of
the number of proteins lacking annotation. Struc-
tural genomics projects account for much of this
increase, as many of the stages in the structure
determination pathway are now automated, so
allowing high-throughput pipelines to be con-
structed.3 Methods to predict function from
sequence and structure are important to fill the
gap between the number of structures known and
those that have functional annotations,4 whilst also
enabling us to explore links between structure and
function.
Function prediction mostly relies on detecting
d.
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similarity between a functionally annotated protein
and the query protein, then transferring the
annotations across. The method by which the
alignment is made can take different forms.
Sequence similarity can be detected using such
tools as BLAST,5 FASTA6,7 and PSI-BLAST.8 Alter-
natively, smaller-scale sequence motifs can be
searched for, such as those in the PRINTS,9

BLOCKS,10 PROSITE11 and InterPro12 databases.
These motifs are short, conserved sequences that
can be indicative of protein function and so are of
high utility in the problem of function prediction.

These sequence-based techniques have their
structural counterparts. Methods such as Combina-
torial Extension13 and VAST14 can be used to detect
similar structures and folds. The structural counter-
part of the sequencemotif can be found in databases
such as ProCat15,16 and SPASM17 that use the spatial
arrangement of atoms in protein functional sites to
create a template.

Defining protein function is not a simple task and
the problem has generated much discussion.18,19

Here, we adopt definitions from the Enzyme
Classification (EC). This scheme dates back to
1956, when the IUBMB began to regularise the
naming and categorisation of enzymes. A hierarch-
ical structure has developed with six classes of
enzyme at the top level. They are oxidoreductases,
transferases, hydrolases, lyases, isomerases and
ligases, determined by the general reaction cata-
lysed (Table 1).

Note that this system gives a description of
function that is independent of the protein structure
and reaction mechanism. As a consequence,
enzymes that catalyse the same reaction through
Table 1. The top level of the Enzyme Classification

Summary of the classes at the top level of the Enzyme Classification
different mechanisms are given the same classifi-
cation, which can lead to structurally and mechan-
istically different proteins being considered as
functionally identical. This lack of context has
been the basis for criticisms of the EC system18

and is a potential source of difficulty in this work. In
order to predict enzyme class from structure with-
out creating alignments it is necessary to use
structural attributes that capture information perti-
nent to functional differences. As proteins may be
assigned the same class despite being structurally
and mechanistically different, then there is a higher
level of structural diversity within a class than if
definitions of function also incorporated structural
context, and so the task of discrimination of
function from structure is more difficult.

To return to existing methods for function
prediction, when the level of sequence and struc-
tural similarity between query and matched protein
is very high, the confidence of the predictions is
typically also high, but as similarity lessens so
confidence diminishes. For pair-wise sequence
alignments above 50%, less than 30% share exact
(four-digit) EC numbers.20 Certain proteins lie in
such remote regions of fold space that they show no
obvious similarity to other proteins. The extent of
this has been estimated21 to be that 5–10% of
proteins are orphans (no homologues), 10% have
only one homologue, and 30% belong to families
with less than ten members. This implies that the
probability of detecting similar proteins is low.
When coupled to the fact that many of the identified
similar proteins also lack function annotations and
the previous point regarding the level of function
conservation, it becomes apparent that there is a
scheme and the general reactions they mediate.



Table 2. Functional classes and sizes

The set is culled from Astral 1.63.40,41

† http://wolf.bi.umist.ac.uk/~mjfikpd2/predict/
enon.html
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pressing need for function prediction methods that
are independent of similarity.

Similarity-independent prediction methods are
found in many diverse and innovative forms.22

Phylogenetic profiling23 links the function of
proteins with similar expression profiles across
different organisms. Gene neighbour methods
work by finding proteins that are co-located on a
chromosome, as it has been observed that function-
ally similar proteins often cluster.24,25 These
methods are not reliant on alignments in the usual
sense, but do still depend on identified proteins
being annotated. There are methods that can make
predictions even without annotations. Text data
mining applies Natural Language Processing tech-
niques to scientific literature in an attempt to gather
functional information.26 Amino acid composition
alone contains a surprising amount of relevant
information that has been utilised for function
prediction using machine-learning techniques.27

A whole battery of neural network-based predic-
tions of post-translational modification states, sub-
cellular localisations, isoelectric points, etc. have
been successfully combined to predict function.28

All of these methods work by detecting similarity to
other proteins, but in a manner that is fundamen-
tally different to the alignment-based techniques.
Instead, similarity is between the query protein and
the generalised properties of a functional class of
proteins, rather than to a specific protein. The
advantage of this approach is that a prediction is
possible even if an alignment to an annotated
protein cannot be made. Our method falls into
this category as it characterises the simple structural
properties of each class of enzymes at the top level
of the EC scheme. Our initial work was based on the
observations made by Stawiski and co-workers,29

who noted broad structural differences between
proteases and non-proteases. These included such
properties as high Ca density and lower than
average surface areas in proteases when compared
to non-proteases. By combining multiple weakly
discriminating attributes using a neural network-
based classifier the function of a protein could be
predicted. The extent to which homology played a
role in this method is unclear, but we have also
shown that grouping proteins by similar function
(in our case, two groups; enzymes and non-
enzymes) allows us to identify simple structural
attributes that differ between groups, and that these
differences can be used to predict function. We
found that when predicting function as enzymatic
or not, attributes such as secondary structure
content, cofactor presence and residue fractions
(particularly at the surface) were useful. Using a
non-redundant subset of the PDB2 we show that it is
possible to predict enzyme class from structure
using support vector machines30,31 with attribute
subset selection.32 The problem is posed as 15 one-
class versus one-class problems. Using this
approach most model accuracies are initially
imbalanced and/or incapable of highly accurate
prediction due to class size differences, which affect
how errors are distributed between classes. To
enhance performance each of the 15 models is
optimised to give more accurate and balanced
results by removing uninformative attributes, so
making each problem less complex and the models
more robust.
The predictions of the 15 sub-problems were

combined using a one-versus-rest support vector
classification approach (in which amodel is built for
one class against all enzymes that are not of that
class). This approach failed when using the total set
of descriptors due to the complicating presence of
irrelevant and noisy attributes. Predictions are 35%
accurate with the top prediction, and correct to an
accuracy of 60% with the top two predictions. This
demonstrates that protein function, as far as the first
level of the Enzyme Classification, can be predicted
from structure without using alignment-based
measures. The method is implemented on the
www†.
Results

Functional class sizes differ greatly (Table 2). This
poses a problem when training classification
models. For example, the most imbalanced problem
of hydrolases (160 examples in the data set) versus
ligases (20 examples) achieves an accuracy of 89%
simply by predicting hydrolase each time. Class
accuracies would then be 100% for hydrolases and
0% for ligases, which is highly imbalanced. This
model is based purely upon class sizes and so tells
us nothing about how to distinguish between
hydrolase and ligase structures. The support vector
machine operates by finding a hyperplane that
separates two classes in a training set with minimal
error (with components to ensure generalisation
ability is maintained). The error penalty for each
class can be adjusted to reflect the relative size of
each class, so that each binary classifier is altered to
predict in a balanced manner and so the “predict
largest class” model can be avoided. For example,
for the hydrolase versus ligase problem described
earlier, incorrectly predicting what is really a
hydrolase adds 20/160Z0.125 to the error function,

http://wolf.bi.umist.ac.uk/~mjfikpd2/predict/enon.html
http://wolf.bi.umist.ac.uk/~mjfikpd2/predict/enon.html


Table 3. 55 Attributes used to describe each protein

Each attribute is simple to calculate from a PDB file. For more on how each attribute is calculated see Methods.

Table 4. Sub-problem performance and number of
attributes

The performance of each one-class versus one-class sub-problem,
with the number of attributes in the optimal model after attribute
selection.
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whereas an error when predicting a ligase costs
160/20Z8. Errors in the ligase class cost more than
errors in the hydrolase class, so that the best way to
minimise the error function is no longer to predict
everything as hydrolase.

Each protein is described using the attributes
listed in Table 3. All are simple to calculate from any
high-quality protein structure.

The multi-class prediction problem is broken
down into 15 sub-problems of each EC class against
each other. Using all attributes, a complex and
reasonably accurate model can be constructed in
most cases. Subsets of attributes can simplify each
problem, however. Backwards elimination search
techniques generate more accurate and simpler
solutions (Table 4). For instance, in the first row the
problem is oxidoreductase versus transferase. After
subset selection only 11 of 55 attributes remained,
yet they were sufficient to build a model with a total
accuracy of 66.2%. Class accuracies are well
balanced; with oxidoreductases being predicted
correctly 68.4% of the time and the transferase
class 64.8% of the time. This is not true in all cases,
particularly for the problems of transferase versus
lyase and hydrolase versus lyase. This is due to the
scoring function benefiting more from achieving
high accuracy with poor balance, than attaining
good balance at the expense of accuracy. What this
says about the underlying distributions and
biological relationships is unclear, though it may
suggest that for these problems the set of attributes
did not contain many strong classifiers.

The final subsets of attributes for each sub-
problem are shown in Tables 5–10. Grey squares
are those attributes in the subset; white are those
that have been excluded. Noteworthy properties of
the subsets include the high utility of iron for
problems involving oxidoreductases, the high
usage of surface composition data, and the very
large number of attributes required to construct
models for ligases. This could be due to the
difficulty of learning with a very small set of data,
though it is also possible that it reflects the high
complexity of ligase function, in which the ligation
of two (typically large) molecules occurs whilst ATP
is hydrolysed.

The percentage of correct predictions in each rank
is shown in Table 11. As a new version of Astral
became available during this work the function of
new structures (not already present in the database)
was predicted. Though this extra set was very small
(117), comparable performance was achieved
(values in parentheses in Table 11). This emphasises



Table 5. Attribute selection map for oxidoreductases

Grey squares are attributes within the subset; white are excluded attributes.
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the generalising ability of the method, showing that
over-fitting was avoided.

Further to this, we applied our method to predict
function for the 222 proteins in the PDB with the
annotation Unknown Function. First function is
predicted as enzymatic or not, and then enzyme
class is predicted (even for those predicted as non-
enzyme). Class numbers are shown in rank order.
For this set, we predict that 164 are enzymes and 58
are non-enzymes. Within the enzymes, we predict
11 oxidoreductases, 21 transferases, 120 hydro-
lyases, five lyases, five isomerases and two ligases.
Table 6. Attribute selection map for transferases
These predictions are available in the Supplemen-
tary Material. A literature search was carried out to
try to ascertain broad functions for these proteins,
either from more recent literature than the PDB
annotations, or by inference from indirect sources.
Of 222 proteins, 150 have no obvious known
function. The majority of these are the products of
structural genomics projects, demonstrating how
the assignment of function is falling behind the
determination of structure. Of the remaining 72, 61
are probably enzymes (of which we predict 54 as
such), and 11 are non-enzymes (we predict six as



Table 7. Attribute selection map for hydrolases
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such). Probable enzyme class assignments were
possible for 56 enzymes, 16 of which we predict
correctly with the top-ranked prediction, corre-
sponding to 29% accuracy. Including the next
ranked prediction increases accuracy to 61% (34
correct), followed by 82% (46 correct) with the third
ranked prediction.

The accuracy of each rank can be broken down
further by class (Figure 1). It can be seen that despite
individual models being highly accurate and well
balanced, combination by the multi-class support
vector machine still leads to larger classes dominat-
Table 8. Attribute selection map for lyases
ing the top ranked predictions. Ligases in particular
suffer here, though successes are all in the first rank.
Discussion

We have developed a system for predicting the
function of a protein from its structure even when
an alignment to an annotated protein cannot be
made. In doing so we have demonstrated the utility
of simple attributes of protein structure in protein
function prediction. It is not our intention to



Table 9. Attribute selection map for isomerases
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compete with alignment-based methods or match
the performance of alignment-independent
sequence-based classifiers. Our goal is simply to
show that simple structural attributes can be used
to predict function and so provide an alternative
when these approaches fail.

It is important to be able to predict protein
function from structure to fully exploit the infor-
mation being generated by structural genomics
projects. Experimentally determining function can
be difficult and often expensive, so target selection
by function prediction is important. Here, we
Table 10. Attribute selection map for ligases
provide a tool for aiding this even in the very
remote regions of fold space, where there are
currently no predictors that incorporate structural
information. Further to this, the approach lets us
explore the relationship between structure and
more broad definitions of protein function.
The method works by generalising the structural

features of proteins that share EC numbers. Each
protein in a non-redundant training set is described
using simple attributes, such as residue fractions,
surface properties, secondary structure fractions
and ligands. With this as input we use a supervised



Table 11. Rank accuracies

For each query protein the potential classes are ranked.
Accuracies in parentheses are for the new set of proteins culled
from Astral 1.65, but not present in Astral 1.63. The accuracy of a
rank is the number of times the prediction is correct for that rank.
For the top rank 35% of predictions are correct. Second rank
predictions are 25% accurate. With the top two ranks the
cumulative accuracy is 60%.
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learning technique, the support vector machine, to
build binary classifiers that discriminate between
enzyme classes in a one-class versus one-class
manner. Though this approach requires more
models to be constructed than the alternative one-
class versus other-classes adaptation of binary
classifiers to multi-class problems, each individual
model is, in theory at least, more simplistic and has
less difficulty with imbalance between class sizes.

To optimise each sub-problem attribute selection
by backwards elimination was used. This gave
simpler, better-balanced and more accurate results.
That the removal of attributes can lead to improved
results may at first seem counter-intuitive. It must
be considered that certain attributes may not be
pertinent to a problem and only serve to complicate
each model. When removed the problem can be
freer from noise, as it contains only useful data. This
Figure 1.
increased simplicity permits better separation and
generalisation. To explore useful combinations of
attributes it is possible to adopt two different
approaches. The “pre-filter” methods rely on
identifying potentially discriminating attributes
prior to constructing the machine learning classifier,
typically by using some statistical measure of the
information content of attributes, such as their
correlation coefficients. In theory, two well-corre-
lated attributes contain much the same information
and so the presence of both is not necessary. Our
preference is for on-line, “wrapper” methods,
which employ the support vector machine within
the backwards elimination algorithm. This allows
us to more subtly explore the utility of attributes as
they interact in the context of the classification
algorithm, which permits a more relevant selection
of attributes.

We endeavour to ensure that our methods do not
sacrifice generalisation in order to achieve accuracy.
By running a validation set in parallel during
attribute subset selection we can guarantee that
models are capable of predicting unseen data.

The imbalance caused by class size differences is
handled by weighting the error penalty during
model training according to class ratios, and by
incorporating the same ratios into the backwards
elimination scoring function. Despite this, class
imbalance remains a problem and a valid goal for
structural genomics projects must include struc-
tures for lyases, isomerase and particularly ligases,
to gain more insight into the function of these less
abundant, but functionally significant proteins.

The manner in which the set was culled from
protein structure databases introduces a level of
difficulty greater still than that in our previous



Predicting Enzyme Class From Protein Structure 195
work. In earlier investigations we adopted the
standard approach of culling a non-redundant set
of proteins and then separating into enzymes and
non-enzymes. This represents a random subset of
data in which homology cannot play a role. Here,
we deliberately incorporate structural similarity
outside of the functional class in order to maximise
dataset size and better represent the full range of
structures in each functional class. This we achieve
by first splitting the data and then removing
redundancy, rather than removing redundancy
and then splitting into classes. Given two structu-
rally similar proteins with different functions, the
first approach only allows one of the proteins to be
present in one functional class or the other. The
second approach allows the presence of both
proteins, representing both functional classes more
fully. This means that eachmodel must discriminate
between functional classes even if they contain
some broad structural similarity. Better coverage of
the range of possible structures makes the problem
significantly more difficult, but the results more
informative.

While the main goal of this project is to develop
methods to predict protein function, it should be
considered that to demonstrate the utility of
structural information we have restricted ourselves
to attributes available from structures (and only if
these are rapidly calculable for the purposes of
making the approach practical). Attributes calcul-
able from sequence have been deliberately excluded
as this information has already been shown to be of
great use.28 If the results of this work are combined
with many sequence-based attributes, then the
resulting classifier should be of greater strength.

The complexity of generalising the properties of a
non-redundant set of proteins that share a function
is such that it is advisable to first seek to use
methods reliant on high-level similarity, such as
sequence and structure alignments. Even though
recent papers have advised that this is not always a
secure method,20 when similarity is high the
confidence and precision of the predicted function
is often greater.

It is apparent that discovering gross-structural
attributes to discriminate between functional
classes of proteins is difficult and only through the
interaction of many weakly differentiating
attributes can stronger classifiers be constructed.
Consequently it is challenging to deconstruct
models and rationalise how they operate. Certain
explanations are possible; such as the presence of
iron is a very strong indicator that the enzyme is an
oxidoreductase. All models involving the oxido-
reductase class use iron and when the raw data are
examined it is clear why. Of the 33 enzymes
containing iron, 27 are oxidoreductases. Iron can
have a role in redox chemistry, which may explain
the attribute’s usefulness.

Another example would be the high utility of the
fraction of surface tyrosine in models involving
hydrolases. On average, surface tyrosine is margin-
ally higher in hydrolases than in other classes,
though perhaps more tellingly, a subset of hydro-
lases contains particularly high fractions of surface
tyrosine. Taking a cut-off of 5% of the surface being
attributable to tyrosine, which corresponds to
approximately one standard deviation from the
3% mean, then 30% of the proteins (normalised by
class size) above this are hydrolases, which is higher
than for other classes. Therefore, for a subset of
hydrolases, surface tyrosine fractions are strong
classifiers.
However, these sorts of deconstructions are the

exception rather than the rule. For most attributes it
is not clear how they are contributing to discrimi-
nation, though it is possible to speculate on how
they might operate. For example, generally surface
residue fractions are more frequently used than
overall residue fractions. This could reflect a
number of properties of the protein surface, such
as localisation (many glycosylation sites for extra-
cellular proteins, hydrophobic residues for mem-
brane proteins, etc.), or the interaction preferences
of various types of protein (those involved in
binding nucleic acids might require large charged
patches on the protein surface). There may also be
more specific information from the protein surface
contributing to discrimination, particularly for low
abundance residues. As an example of this, the
protein with the highest proportion of surface
tryptophan, PDB 1H8G, EC 3.5.1.28, has 10% of its
surface accounted for by this residue type (com-
pared with an average of 1.2% across the whole set).
These tryptophan residues are parts of hydrophobic
pockets that cover the protein in order to bind
choline,33 demonstrating how rare residues can be
tolerated if they are in a functional role.
The set of attributes represents various aspects of

the whole of the protein structure, yet the most
important region of an enzyme as regards function
should be the reaction centre. At present active site
identification is, for the most part, only possible
using methods such as ProCat15,16 and SPASM.17

These approaches are based on motif-identification
and so do not belong in the category of alignment-
independent prediction algorithms. Many alterna-
tive approaches to active site identification are
being explored34–39 that, if sufficiently accurate,
will permit a whole new set of attributes to describe
functional site differences between classes of
enzyme.
Two related approaches to function prediction

have been developed that operate on sequence-
based attributes. We have already mentioned the
excellent work by Jensen et al.,28 in which a neural
network approach combines predictions of post-
translational modification states, subcellular local-
isations and other such information into function
predictions. Similar to this is the work by Cai et al.,40

in which function is predicted using support vector
machines. Quoted performances are highly accu-
rate, with predictions being made to the second
level of the EC hierarchy. However, the authors note
the influence of sequence similarity (“our study
seems to suggest that sequence distance has certain
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(sic) level of influence on the accuracy of SVM
classification”, page 71). This approach seemingly
gains much of its performance accuracy from
redundancy within the data set and so does not
entirely fall into the category of alignment-inde-
pendent predictive methods. For this to be the case
performance must be demonstrated on a less
redundant data set.

A brief précis of our prediction method is as
follows: we use gross structural attributes to
describe proteins in a non-redundant subset and
generate accurate, balanced models for each binary
sub-problem. We combine these results using a
multi-class SVM into a function prediction method
that performs significantly better than random
(22.1%, see Methods).

It is difficult to estimate the performance of the
multi-class support vector machine to give a total
accuracy to the approach. Internal SVM parameters
require tuning to optimise performance, but the
figure often quoted in the literature as the overall
performance accuracy for multi-class problems is
the result of optimising to maximise total accuracy.
This is a rather unprincipled approach as it can
result in models that are biased and not well
balanced. Here, this approach would select models
that are 45% accurate, yet closer analysis of the
results reveals that all accuracies are concentrated
in the three largest classes. To optimise the multi-
class model we adopt the strategy of penalising a
scoring function to an extent related to the relative
class size, much as in the backwards elimination
and sub-problem parameter tuning. In this case
total prediction accuracy is 35%. This increases to
60% in the top two ranks, and 77% with the top
three. There is some remaining bias, with the top
rank prediction gaining most of its performance
accuracy from the larger classes, and with the
isomerase class only being 6% accurate. Better
multi-class models for predicting isomerases can
be achieved by altering parameters, but at the
expense of other classes.

The “correct” accuracy for a multi-class problem
is really dependent upon the system for combining
predictions. Using our approach breaks the pro-
blem down into one-class versus one-class models,
optimises subsets and parameters, and then makes
predictions for all proteins. By doing this we can
generate accurate and robust predictors of protein
function from structure.
† http://wolf.bms.umist.ac.uk/naccess
Methods

Data set

The dataset is constructed using function definitions
obtained from DBGet41 PDB Enzyme42 cross-links and
structural relations from the Astral SCOP 1.63 super-
family level dataset.43,44 In each functional class no
structure contains a domain from the same superfamily
as any other structure. Within a functional class there is
therefore no similarity greater than or equal to the
superfamily level. Across classes, domains from certain
superfamilies can be present more than once. This is in
order to represent the full range of protein structures
within a functional class and also force the method to
address the problem of predicting protein function
correctly, even for broadly similar structures. The Astral
lists were culled so that only whole protein structures
with a SPACI score of 0.3 or greater could be selected for
each functional class.43 The SPACI score combines
various measures of structural quality into one value.
Structures with low SPACI scores are excluded to
maintain accuracy within the set. In an attempt to
preserve biologically significant attributes the PDB
“biological units” were used.2 This is a system whereby
the PDB files have been converted into what is considered
to be their functional form (e.g. monomer, dimer, etc.).
The clustering strategy for building the set was as

follows: for each functional class find all proteins with a
SPACI score43 0.3 or above. For one functional class a
protein is chosen from the set and all the superfamily
domains it contains are identified. Each of these super-
families is now represented in the class, so all proteins
that contain domains from the same superfamilies are
now eliminated from future selections. When the next
protein is chosen it is from a reduced set that does not
contain domains from any of the superfamilies previously
selected. This process is repeated until there are no
further selections to make. In this way we can choose a set
of proteins that covers the range of superfamilies within a
functional class. This is done for each functional class. It is
not possible for domains from the same superfamily to be
present more than once within a functional class, but it is
possible for domains from the same superfamily to be
present in more than one functional class.
During this project Astral upgraded to version 1.65.

From the new entries a further validation set was culled in
a similar manner.
Attributes for model building

Attributes used for describing each protein are delib-
erately simple and rapid to calculate. Size is the number
of amino acid residues in the protein. Residue preference
is simply the number of each residue type in a protein
divided by the total number of residues.
Surface residue preference is the total surface area

attributable to each residue type divided by the total
surface area (also an attribute), as calculated by
NACCESS.† Another surface-based attribute is the fractal
dimension. This is calculated as by Stawiski et al.,29 by
calculating the gradient of the log–log plot of probe radius
against molecular surface (calculated byMSMS45). Fractal
dimension might be thought of as representing the
“crinkliness” of the protein’s surface. This attribute is
included to attempt to capture mid-to-small scale
variations in the protein surface topology. Larger scale
variations, such as deep surface pockets, should be
captured by the surface area to volume ratio. This goes
some way to incorporating information on large invagi-
nations on the protein surface, but also may reflect
unusually shaped proteins.
Secondary structure contents are derived from the

Stride46 assignments of helix (a, 310 or p), sheet and turn.
Heterogen and metal data are taken from the PDB file
HETNAM records and are presented in binary form (1 for
present, 0 for not present). As cofactor analogues are often
used in crystallography we accept the following codes to

http://wolf.bms.umist.ac.uk/naccess
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represent ATP: AMP, A. ADP and ATP. FAD is rep-
resented by the codes FAD or FDA. We take NAD, NAH,
NAP and NDP to represent the presence of NAD. It is
evident that this system could miss many analogues, but
in earlier work this was found to be the best way to
incorporate heterogen information without introducing
excess noise (many analogues that are equivalent in the
databases of heterogens are in fact not equal and so
introduce considerable error).
Support vector machines

The support vector machine algorithm30,47 is essentially
a binary classifier, though it can be extended to handle
multiple classes (see Combining classifiers with multi-
class SVMs, later). It separates two classes described by
n-attributes (in n-dimensional space) in a way that
minimises error without over-fitting to the data.31 This
is important to ensure high performance on unseen data.
The separation is achieved by the segregation of the space
into half-spaces with a linear hyperplane so that each
half-space corresponds to a class label. Query sample
orientation relative to this hyperplane gives the predicted
class. Most real problems do not have simple, linear
solutions. To address this a kernel function can be used to
map the data into a higher dimensional space where a
linear separation is feasible. Support vector machines
frequently out-perform other machine-learning methods
of choice and are particularly useful for noisy data.
The implementation of the algorithm used here is

LIBSVM.† The C-SVC type machine was used with a
radial basis function kernel. Two internal parameters,
“cost” and “g” (error penalty and kernel function
variables), are optimised by grid searching. This optim-
isation is performed prior to attribute subset selection, as
it is too computationally expensive to perform for each
subset generated during selection. Classes are weighted
according to their relative sizes. All other parameters are
run on default settings. All non-binary attributes are
normalised to be in the range 0 to 1.
Validation is performed using leave-one-out testing.

Each protein takes a turn being the query protein, with
the model being built on the remaining proteins in the set.
The query protein then has its class predicted. The sum of
correct predictions divided by total number of queries
estimates the whole model accuracy.48
Backwards elimination for attribute subset selection

The full set of attributes used to describe each protein
may not be optimal. Certain attributes contain little or no
information relevant to the classification task. Noisy data
make a problem more complex and often its removal can
lead to more simple, easy to interpret and better
performing models.32 Choosing which attributes to keep
and which to discard is not a trivial problem. As the
number of attributes grows the problem rapidly becomes
highly complex. For N attributes we have 2NK1 possible
subsets of attributes (ignoring the all-absent option).
Here, we use a backwards elimination approach to select
better performing subsets. The basic idea of backwards
elimination is to assess performance using a set of
attributes, and then eliminate each attribute from the set
one at a time. The attribute that gives the greatest
performance gain upon its elimination is permanently
† http://www.csie.ntu.edu.tw/~cjlin/libsvm
removed from the set. This process is repeated until no
further enhancement occurs.
The most simplistic measure of performance is to use

the total accuracy. For problems with unequal class sizes
this can lead to bias within the model. To avoid this a
scoring function can be used that takes into account class
sizes. The same error penalties that are used in weighting
the support vector machine (the class size ratios) can be
used to construct a score for each model. For classes A
and B, where the size of class A is twice that of B, an error
in B adds double an error in A to the final score. Choosing
the lowest score is then equivalent to selecting that model
that gives most optimal balanced performance. This same
scoring function is used for tuning C and g.
During selection it is necessary to partition the training

set further, so that a model can be built and its
performance assessed. The key idea behind machine-
learning algorithms of this type is that the data used to
build the model reflects the real underlying distribution.
The model should be able to predict any sample drawn
from the same distribution. For small data sets the
partition can lead to different approximations of the real
distribution (as it is difficult to approximate a distribution
from only a few samples). The average accuracy of
multiple random partitions of the same training data
gives a performance estimate that better reflects the utility
of the attributes, and which is not so dependent upon the
partition, than if the same partition is used throughout
selection process.
It is possible that the subset of attributes can begin to

describe only the data in the training set. To avoid this we
partition the data into thirds and use two thirds, the
training set, to optimise the algorithm. The remaining
third, the validation set, we run in parallel to score the top
subset at the end of each round of elimination. The
performance on the validation set in no way influences
the selection of the attribute to be eliminated. If over-
fitting to the training set occurs the performance on the
validation set begins to degrade. By tracking the
validation set performance we can choose the stopping
point of the elimination and so pick the most optimal and
best generalising model. Taking such measures is an
essential stage in the construction of robust models that
avoid over-fitting and it is often neglected, with the
consequence that many performance accuracies quoted in
the literature are only applicable to the training set and do
not truly reflect predictive accuracy.
Combining classifiers with multi-class SVMs

Support vector machines have been adapted to handle
multi-class data in a number of ways.49 Most methods
involve reducing the multi-class problem down to binary
problems. The one-versus-all approach involves con-
structing models for one class against all others. To
predict enzyme function one might build the model
“oxidoreductases” versus “not-oxidoreductases”. Initial
trials using this approach to predict enzyme class from
the attributes failed as a result of the large difference in
class sizes (despite weightings) and the complexity of the
problem. To make each sub-problem simpler it is possible
to construct models for one class against each other class
(e.g. oxidoreductases versus transferases, hydrolases
versus ligases, etc.). For a six-class problem 15 models
are required. Performance on all attributes using the
multi-class LIBSVM has a maximum performance
accuracy of 34%, though this model is simplistic in that
it concentrates on the largest classes only, with almost all
the correct predictions being found in the hydrolase class.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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This is not markedly different from the model Always
Predict Hydrolase, which is 32% accurate simply because
of the large number of hydrolases. For this reason it was
necessary to break down the enzyme class problem, tune
each model and recombine results. By outputting the
predictions of each of the 15 models it is possible to
represent their results as 15-component vector. The
standard multi-class SVM approach built into LIBSVM
can then handle this much cleaner and better-optimised
problem. However, there are still issues concerning
parameter tuning that can lead to great variability
between classes in terms of accuracy. Often figures quoted
as total accuracies in the literature are misleading, as they
are not explicit about how errors are distributed between
classes. Selection of support vector machine parameters
can greatly alter this, with a grid search of C and g on the
multi-class problem here able to swing from high total
accuracy by concentrating on larger classes, to low total
accuracy but with improved performance on smaller
classes. Here, we adapt the scoring function described
earlier to themulti-class problem, so that the error penalty
reflects relative class sizes.
Our approach allows us to rank the six possible classes

in likelihood order. The initial multi-class SVM uses all
sub-problem results to predict a class. This predicted class
is then excluded from training of the subsequent SVM
that predicts the next class. The process is repeated until
all options are exhausted.
Random performance we take as the sum of the squares

of class size divided by the total set size. For the problem
of predicting enzyme class when it is known that the
protein is an enzyme, random is 22.1%.
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