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Abstract 

We provide a rigorous proof that Jeffreys’ prior asymptotically maximizes Shannon’s mutual information 

between a sample of size n and the parameter. This was conjectured by Bernard0 (1979) and, despite the 

absence of a proof, forms the basis of the reference prior method in Bayesian statistical analysis. Our proof 

rests on an examination of large sample decision theoretic properties associated with the relative entropy or 

the Kullback-Leibler distance between probability density functions for independent and identically 

distributed random variables. For smooth finite-dimensional parametric families we derive an asymptotic 

expression for the minimax risk and for the related maximin risk. As a result, we show that, among 

continuous positive priors, Jeffreys’ prior uniquely achieves the asymptotic maximin value. In the discrete 

parameter case we show that, asymptotically, the Bayes risk reduces to the entropy of the prior so that the 

reference prior is seen to be the maximum entropy prior. We identify the physical significance of the risks by 

giving two information-theoretic interpretations in terms of probabilistic coding. 
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1. Introduction 

In Bayesian statistics much attention has been focussed on how to choose a prior. 

Various criteria have been proposed. For instance, Jeffreys (1961), George and 

McCulloch (1989), and Chang and Eaves (1990), amongst others, have advocated 
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invariance conditions; matching frequentist coverage probabilities has been proposed 

by various authors including Welch and Peers (1966), Tibshirani (1989), and Bickel 

and Ghosh (1990). Others such as Bernard0 (1979), Berger and Bernard0 (1989, 1991, 

1992a,b), Berger et al. (1989), and Polson and Wassermann (1989) have advocated 

optimizing functionals based on information-theoretic quantities. Also, Hartigan 

(1975) has examined asymptotic bias as a functional to be optimized. The earliest 

information-theoretic approach (Bernardo, 1979) advocated a criterion based on 

Shannon’s mutual information, a special case of the relative entropy, so as to obtain 

what he called a ‘reference prior’, i.e. a prior against which alternative priors should be 

judged. This paper is intended to be a contribution to the development of the reference 

prior method. 

Information-theoretic methods are attractive because, in the context of prob- 

abilistic coding, relative entropies have a well-defined role. They can be used 

to characterize the supremal rate of transmission for information-theoretic 

channels and to identify the redundancy of a noiseless source code. As a result, 

Bernardo’s relative entropy criterion that we examine here can be given a physical 

interpretation. 

Bernard0 (1979) distinguished between the case where all parameters are of 

interest and the case where nuisance parameters are present. In the first of these 

he used a heuristic argument to support his conjecture that for smooth parametric 

families Jeffreys’ prior maximizes an asymptotic expression for the Shannon 

mutual information, I(O;X”). We give a rigorous justification for his conjecture: 

We prove that Jeffreys’ prior is the unique continuous prior for which the Bayes 

strategy achieves the asymptotically maximum Bayes risk with relative entropy 

loss (Theorem 1). This maximin risk coincides with the minimax risk. Thus, we 

prove that Jeffreys’ prior is asymptotically least favorable in smooth finite- 

dimensional parametric families in a formal decision-theoretic sense. Consequently, 

we can identify an asymptotically minimax estimator and its risk, an asymptotically 

minimax code and its redundancy, and the distribution achieving the capacity of 

certain channels. Also, obtaining the least favorable prior is useful because its density 

indicates which values of the parameter are the hardest to estimate. 

This approach is in contrast to Jeffreys’ original motivation which was based on 

invariance considerations; see Jeffreys (1961, Section 3.10). There, he observed that 

(det Z(Q))“‘, where Z(0) is the Fisher information matrix, is the Jacobian of the 

transformation of the parameter space that makes Hellinger and relative entropy 

distances locally Euclidean. This led him to propose w*(0) =(det (I(e))li2/c as a choice 

of prior on the basis of its invariance under reparametrization. 

Bernardo’s framework for identifying reference priors is extended to problems 

with nuisance parameters in Berger and Bernard0 (1989, 1992a, b). In that 

context, the results here have already been used to provide a formal justification 

for the prior they use in the presence of nuisance parameters; see Ghosh and 

Mukerjee (1991). 
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The same criterion can be applied when the parameter is assumed to take values in 

a discrete space. In this case we show that the relative entropy criterion reduces to 

maximum entropy. 

Jeffreys’ prior has been demonstrated to have other desired properties. Using 

a decision-theoretic formulation of unbiasedness, Hartigan (1965) demonstrated 

that, for loss functions with constant second derivatives, Jeffreys’ prior is mean 

unbiased (Hartigan, 1965, p. 1139, also see Theorem 3) when the parameter space is 

a subset of the real line. Also, in the unidimensional case, Welch and Peers (1966) 

demonstrated that Jeffreys’ density gives one-sided credible regions which match 

confidence intervals more closely than do the intervals from any other prior; see 

Hartigan (1983). 

Turning to formalities, we assume we are given a parametric family of probability 

density functions (pe: BEQ}, Q2c Rd, t? = (Or, . . , ed), with respect to a fixed dominating 

measure 2(dx) on a separable metric space X, with probability measures assumed to 

be defined on the Bore1 subsets of X. We denote the density of IZ independent 

outcomes xn= (x,, . . ,x,) by p~(x”)=fl~, rps(xi). Let D(pllq) denote the relative en- 

tropy or the Kullback-Leibler distance, which for densities p and q is defined to be 

P(X) 
~MIq)=&Jog - q(X)’ 

The main quantity of interest here is the relative entropy D(pi/I qn), between the 

density functions pi(x”) and an arbitrary joint probability density function qn(x”), with 

respect to the same dominating measure n”(xn). 

A game-theoretic interpretation is that one player, Nature, picks QESZ and assigns 

the joint density pg for each n, while a second player, the Statistician, chooses qn for 

each n. Then, the relative entropy D(p;/I q,,) can be regarded as the risk to the 

Statistician or, in game-theoretic terminology, the ‘payoff’ to Nature. For prior 

probability density functions w(8), 8~52 with respect to the Lebesgue measure on lRd, 

the Bayes strategy, which is to minimize Jn w(O)D(p~llq,)dO over densities qn, is 

achieved by choosing q,,(x”)=m~(x”); see Aitchison (1975), where mz(x”)= 

S,p:(xn)w(t0de. F or general prior distributions w(d8) on Q, the definitions are the 

same, with integration with respect to w(d8) in place of w(0) de. 

We obtain the asymptotics associated with the Bayes strategy. The quantities that 

we examine in this paper include the risk of the Bayes strategy, which, for priors 

w supported on a compact subset K in the interior of Q is 

we, w)=D(P; II ma, (1.1) 

its corresponding Bayes risk, 

R,(W)= s me, 4w9m (1.2) 
K 
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and the minimax value, for 8 in K 

(1.3) 

where the infimum is over all probability densities of n on X”. 

The quantity D(p;llm,“) can be given a statistical interpretation also. It is 

the cumulative risk of a sequence of Bayes estimators. Indeed, let bk(x) be the 

predictive density given by 

~k(X)=m,w(Xk=X~Xk-r)=m~(Xk)/m~_l(Xk-r) 

for k=2 , . . . ,a. For n= 1, #r(x)=m~(x). Then, as in Aitchison (1975) or Clarke and 

Barron (199O), it is seen that @k is the Bayes estimator of the density of Xk based on 

Xk-‘, under relative entropy loss. Since the expression in (1.1) may be written as 

D(p!ilm,“)= i ED(pOIIBk-l), 
k=l 

the sum of the risks for each outcome, the quantities R,(8, w), R,(w), and R,, may be 

interpreted as the cumulative risk of the Bayes estimator sequence, the cumulative 

Bayes risk of the Bayes estimator sequence, and the cumulative minimax risk, in an 

on-line estimation context. 

In this paper we have three main goals. The first is to give asymptotic formulae for 

(1.2) and (1.3) for the continuous and discrete parameter cases. The second is to find 

the asymptotically least favorable prior corresponding to the maximin risk. The third 

is to give an information-theoretic interpretation for the quantities (1. l), (1.2) and (1.3). 

When 8 is a continuous parameter we show, formally, that the risk of the Bayes 

estimator, R,(B,w) = D(pi (I m:), satisfies the asymptotic expression 

R.(B,w)=~log&+logdetI(B)+log &)+o(lL (1.4) 

in which the error, o(l), tends to zero as n-co, uniformly on compact sets in the 

interior of the support of the prior. The pointwise validity of (1.4) was verified in 

Clarke and Barron (1990). Here we use the uniformity of (1.4) over compact sets as the 

main tool for deriving the decision-theoretic asymptotics of (1.2) and (1.3). 

The Bayes risk, R,(w), is obtained by averaging the risk R,(O, w) with respect to the 

prior w. It is seen that this Bayes risk is the relative entropy distance between the joint 

density w(B)pe(X”) and the product of marginals w(0)m~(Xn). This latter quantity is 

Shannon’s mutual information I(@; X”) between the parameter 0 and the sample 

X,, . . ,X, which may be interpreted as an average relative entropy distance between 

the densities p$ and m,“. Equivalently, application of Bayes rule shows that it is also 

the average relative entropy distance between w(e IX”) and w(e), the posterior and 

prior densities for 0. Provided (1.4) is valid it is seen that the asymptotic expression we 

obtain for Bayes risk is 

R,(w)=;log &+; 
s 

w(e)iogdet r(e)de+fq~)+~(i), 
K 

(1.5) 
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where H(w)=jw(B)log (l/w(0))d0 is the entropy of the prior density w, and o(l)+0 

as n+co. This actually holds more generally; see Ibragimov and Hasminsky (1973) 

and Efroimovich (1980). 

The maximum of this mutual information over choices of prior distribution is 

denoted as 

R,*=supR,(w). 
w 

(1.6) 

where the supremum is over all distributions (discrete and continuous) supported on 

the given KcS;Z. Since R,(w) is the Bayes risk of the Bayes estimator, R,* is the 

maximin risk. The reference prior method of Bernard0 is to choose that prior w* 

which achieves the maximum mutual information in (1.6) or achieves the maximum in 

an asymptotic expression for R,(w). Typically, the choice of w* that (asymptotically) 

maximizes the information is in fact the (asymptotically) least favorable prior with 

respect to the relative entropy loss, i.e. the reference prior and the least favorable prior 

are the same. Indeed, for the models pe treated here, the minimax and the maximin 

values agree for finite IZ, R,* = R,. This equality follows from Davisson and Leon- 

Garcia (1980, Theorem 3). Moreover, when II is finite, Berger et al. (1989) and Zhang 

(1994) have demonstrated that the least favorable prior typically is discrete, i.e. for 

finite n, the supremum is achieved by a discrete prior, w,, for which R,(w,) = RX. 
By contrast, as n increases, we show that the asymptotically minimax risk is 

achieved by Jeffreys’ prior, w*(e) =(det Z(~))“‘/C, which is continuous, where 

c =JK Jdet I(0) de. The asymptotic form for the minimax risk is, by using (1.4) 

infsupD(p;iIq.)=i log&+log 
qn BtK s 

K dmd0+o(l). (1.7) 

In addition, Jeffrey? prior is the unique asymptotically least favorable continuous 

positive prior. Moreover, although sequences of discrete priors can achieve the same 

asymptotic maximin value, no prior w or sequence of priors (w, ) I,“= 1 can achieve an 

asymptotically higher value for the information R,(w) than is achieved by Jeffreys’ 

prior. This means that Jeffreys’ prior is globally least favorable, but not necessarily 

uniquely so. Our results only give uniqueness among positive continuous priors. 

When the parameter takes discrete values we can obtain asymptotic formulae for 

(1.1) and (1.2) which are analogous to (1.4) and (1.5). We show that for discrete 0 

(1.8) 

and then that 

R,(w)=~w(B)R,(B, w)=H(w)+o(l). (1.9) 
B 

If the parameter space is finite, then the asymptotically least favorable distribution is 

uniform over the values of 0. If the parameter space is noncompact and no constraint 
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is imposed on the class of priors then, as is typical in the continuous case, the 

maximum entropy is infinite. Maximizing the entropy in (1.9) is independent of the 

parametric family and depends only on the support of the prior. This is different from 

the result of the optimization in (1.7) which gives a prior proportional to (det 1(Q))“* 

and so depends on the parametric family. (Attempts to deal with an appropriate 

choice of reference prior in the discrete nonfinite case are in Berger et al. (1989) and 

Berger and Bernard0 (1991)) 

It can readily be verified that our hypotheses are satisfied in many examples. In the 

continuous case there are three main hypotheses. They are expected supremum 

conditions, that the Fisher information is a positive real number on the parameter 

space, and that the parametrization of the family of densities is one-to-one. As 

a consequence, it can be seen that our results apply to many commonly occurring 

parametric families including the Normal (p, a*), the Gamma (p, A), the Binomial 

(n, p), and the Poisson (A). For these families our results demonstrate that when the 

parameter space is restricted to a compact set, Jeffreys’ prior is asymptotically least 

favorable under relative entropy loss and that Jeffreys’ is the reference prior. 

In the information theory context of universal data compression, the quantities 

R,,(t), w), R,(w), and R, can be interpreted as the redundancy, average redundancy, and 

minimax redundancy of universal source codes; see Davisson (1973) and Csiszar 

(1993). Krichevsky and Trofimov (1981) studied minimax redundancy in the multi- 

nomial case, obtaining R, = $ d log n + o(1) as its asymptotic expression. Rissanen 

(1986,1987) showed that the redundancy R,(B, w) equals *d log n + o(log n) for smooth 

parametric families. Here, we extend the more exact asymptotics for R,(B, w) derived 

in Clarke and Barron (1990) to give the asymptotics for the average and minimax 

redundancies R,(w) and R,. 

Also in the information theory context, the characterization of R,(w) as a special 

case of Shannon’s mutual information I(O;X”) leads to implications for channel 

coding with one sender and many receivers. In this case R,* is the capacity of the 

channel and w* is the source distribution which achieves the capacity of the channel. 

The outline for the remainder of this paper is as follows. In Section 2 we formally 

state our main results which are subsequently proved in Sections 3 and 4. In 

Section 5 we give the information-theoretic and statistical interpretations of the 

quantities we have examined. 

2. Formal statements of conditions and main results 

So as to facilitate the statement of our main results we give a list of conditions to 

which it will be convenient to refer to. 

Expectations, E or Eg, are taken with respect to pe unless denoted otherwise. We 

denote the density of the mixture distribution by m=m, = m,,,, where W is the 

probability with density w. A similar notation is used for the mixture distribution. We 
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regard the relative entropy as a function of probabilities rather than densities and 

write p(X 1 f3) for pe(X) when convenient. Also, we assume the parameter space 52 has 

nonvoid interior and that its boundary has d-dimensional Lebesgue measure zero. 

Condition 1. The density p(xl@ is twice continuously differentiable in 0 for almost 

every x, and there is a 6 = s(0) so that for each j, k from 1 to d 

E sup &logH’) 2 
(S’/‘S’-SiI <S) J k 

is finite and continuous as a function of 0 and for each j from 1 to d 

E ;~logp(Xl@ 
2+< 

.I 

is finite and continuous as a function of 8. 

There are two information matrices, which typically coincide, which we use here. 

One is the Fisher information which we take to be defined by 

1 j,k=l ,,, d, 

I 1 

and the other is the second derivative of the relative entropy 

When Condition 1 is satisfied the relative entropy is twice continuously differentiable 

and J(e) is seen to equal the matrix with entries -Eg(a2/aeiae.,)logp(X18). 

Condition 2. Z(O) is positive definite and coincides with J(d). 

Under Condition 1, Condition 2 will be satisfied provided that ~(d2/dBi&3,) x 

p(XI f?)n(dx)=O. See, for instance, Lehmann (1983, Lemma 2.6.1). 

We next give a condition on the parametrization of the parametric family. 

Condition 3. The parametrization of the family {pe} is one-to-one, i.e. for B#B’ we 

have that the corresponding probabilities P0 and PO, are distinct. 

The next condition is used for the results (2.1), (2.2) and (2.3) that require a probabil- 

ity density w(0). It is not required for the results (2.4) and (2.5) that involve optimiza- 

tion over choices of prior W or distributions q,,. Fix a compact set K in the interior 

of 52. 

Condition 4. The prior w is positive, continuous and supported on K. 
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For the of completeness state a from Clarke Barron (1990) 

summarizes the for the of the estimator, (Theorem is stated 

more generally, possibly noncompactly priors under soundness 

condition.) 

Theorem 0. Assume that Conditions l-4 are satisjed. Then, for each 6 in the interior of 

the support of w, 

log PO(X”) 1 d 1 
-+-ssI,.qe)-Is,--log n+i0g - 
m(X”) 2 2 2xe 

+IlogdetJ(B), (2.la) 
w(e) 2 

in Pi probability and in L1 (P@) as n+ CO, where S, = (1 /&)V log p(x”lg). Consequently, 

R,(e, ~)=;10g &+~logdetl(B)+log 
1 

-+ o(1). 
w(e) 

(2.lb) 

Equation (2.lb) guarantees that (1.4) is true pointwise in 8. The first theorem 

extends that result by giving the minimax and maximin asymptotics for continuous 

parameters taking values in a compact parameter space. 

Theorem 1. Assume that Conditions l-4 are satis$ed. Then the risk of the Bayes 

strategy satisjes the following asymptotics uniformly on compact subsets in the interior 

of the support of w, i.e., for each K,, in the interior of K 

ilog &+log F) /=0. (2.2) 

Again, assume Conditions 1, 2, 3, and 4. The Bayes risk of the Bayes estimator satisfies 

!~~/R”(w~-(~iOg~+S~w(e)log~de)(=o. (2.3) 

Now, assume only, that Conditions 1,2, and 3 are satisfied. The asymptotic minimax risk 

R, = info, supeEX D(Pi /I Qn) satisjes 

R,,-ilog& =log 1 s K d-de, (2.4) 

and, the maximin risk R,* = sup,,, R,(w) (where the supremum is over all distributions 
supported on K) has the same asymptotics: 

R:-ilog& =log d-de 1 s K (2.5) 

JefSreys’ prior, w*(e) = ,/det Z(e)/ c with c = jK ,/det Z(e) de, is the unique continuous and 
positive prior on Kfor which the Bayes strategy achieves the asymptotic maximin value, i.e. 

lim R,(w*)-ilog& =log 1 s J-de. 
n-rcc K 

(2.6) 
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No other prior w, or sequence of priors (w,) IF= 1, discrete or continuous, achieves an 
asymptotically larger value of R,(w) than does Jeffrey? prior. 

Remark. To show that w* has the indicated optimally properties it would suffice by 

standard decision-theoretic arguments to upper bound the maximum risk 

supBEK R,(fI, w) by idlog[n/2rce] -log[w(B)/Jdet Z(e)] +ol, at least for w = w*, and 

to lower bound the Bayes risk R,(w) by the average of the same asymptotic expression. 

The conditions required may be less than those used here to get the uniformity of the 

asymptotics of the risk R,(8, WI); cf. Ibragimov and Hasminski (1973) and Efroimovich 

(1980) for the asymptotics of R,(w) under weaker conditions. 

The asymptotic expression for the mutual information for continuous priors takes 

the form 

lim n+cc R,(w)-ilog & =logc-D(w I/ w*), I (2.7) 

where w* is Jeffreys’ prior. Therefore, it is apparent from (2.7) that the unique 

(continuous) prior maximizing the limit of the mutual information is Jeffrey? prior 

(since D(w (1 w*)aO with equality if and only if w =w*). Recall that if a Bayes 

procedure has (asymptotically) constant risk then it is (asymptotically) minimax. 

Indeed, to complete the demonstration of the desired asymptotic properties it 

would be enough to show that R,(8, w*)-(d/2) log (n/2rce) is asymptotically constant 

for BEK with value log c. The result of (2.2) gives this desired uniformity for compact 

sets in the interior of K. However, on the boundary of K, the behavior of the risk 

R,(O, w*) may be different from what (2.lb) suggests. Nevertheless, in the proof we 

identify the asymptotic minimax value. The trick is to bound the risk using Jeffreys’ 

prior on sets K’ slightly larger than K. The asymptotic minimax value is the same as 

the Bayes risk achieved by Jeffreys’ prior on K. Consequently, Jeffreys’ prior is 

asymptotically least favorable and no sequence of priors has an asymptotically larger 

Bayes risk. 

In noncompact cases lower bounds on the maximin risk can be obtained by 

restricting the application of Theorem 1 to compact subsets of the parameter 

space. When l, ,,/det I(Q is infinite, the value of lim,,, R,* -id log n is seen 

to be infinite by applying Theorem 1 to a sequence of compacta with divergent 

SK Jdet r(e) de. 

It is possible to extend the present result to include parametrized families of 

densities whose parameter does not vary a compact set contained in the interior 

of the parameter space. In particular, Clarke and Barron (1991) give conditions 

which imply the convergence of the Bayes risk in (2.3) while permitting the 

parameter to vary over a set which may contain boundary points of the parameter 

space. 
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An examination of the proof of the results in the continuous case shows that the 

id log n behavior comes out of a Laplace’s method argument; see Clarke and Barron 

(1990, Lemma 4.1). This cannot work in the discrete case and the asymptotic form is 

a constant independent of n, to order o(1). Our result is the following. 

Theorem 2. Suppose that the members of the parametric family to which the prior 

distribution W( .) with density w( .) (with respect to counting measure) assigns positive 

mass are distinct and there is a Kullback-Leibler neighborhood of PO which excludes all 
other members of the parametric family which have positive mass under the prior. Then 

D(P, II MJ=lw &)+o(‘) 

as n-co. 

Corollary 1. Assume that the entropy of the prior isjnite and that the parameter values 

in the support of the prior are isolated (are not the limits of other parameter points). Then 

KI(w)=~NP%%)w(g)=H(w)+o(l) 
e 

as n+co, where H(w)=C,w(Qlog l/w(0). 

Remark. In the case that the parameter space is infinite, the corollary is already well 

known and follows from Fano’s inequality; see Blahut (1987). 

Before giving rigorous details in Section 3, here we give the heuristic argument for 

the validity of the asymptotic expansion for R,(0, w). We use Laplace’s method to 

approximate the integral m(xn) = j, p(x”l Q’)d&, which defines Bayesian’s marginal 

distribution for the data. Laplace’s method is to apply a second-order Taylor expan- 

sion to logp(x”I 0) so as to reduce to an approximate Gaussian integration. The 

appropriate Taylor expansion is 

P(X”l@) 
log ~ 

P(.4e) 
=~(e,-e)ls,(e)-3n(81-e)tI*(e*)(e,-e), 

- 
where S,(e)=( 1 Jn)V logp(x”l0) and I*(Q) is the empirical Fisher information with 

entries -(l/n)(P/&Ij8ei)log p(x” 6) and 8* is a point on the line segment joining 6’ 

and 8. 

If a consistency argument is used to restrict the integration in m to a neighborhood 

of 0 and to argue that the score S,,(e) is near its mean value of zero and if the 

error in the replacement of 1*(0*) by the theoretical Fisher information 1(Q) is 

ignored, then 

m(x”) _ w(e)(2n)d/Z(~~)- 1 e(llZ)S,(e)r-‘(e)S,(8) 

Pwle) 
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w) = E log ~ 
m(x”) ’ 

the expected logarithm of the right-hand side of (2.8) yields 

d 1 
21og 2-&+ilogdetI(0)+log __ 

w(e) 
(2.9) 

as the desired asymptotic expression. 

The proof of the validity of this expansion (pointwise in 0) in Clarke and Barron 

(1990) demonstrates that the sources of error in Laplace’s method can be controlled 

when taking the expected logarithm. There it is shown (cf. (4.10) (4.11), p. 464) that for 

each positive E, 6 the remainder defined by Rem,(B, w) = R, (0, w) -3 d log [n/2ne] + 

1ogJdet Z(e)/w(e))]) satisfies 

Rem, (fl, w) 2 P~((A,n&)“) log J%(A,n&)“) 

dE 
_~ +V- 1) 

plog(l -&)-_P(6,8) 
2(1-E) 2 

(2.10) 

when P;;((A,n&)C)<e-l, where ~(6, e)=supjs’_si<aI log w(P)/w(@ goes to 

zero as 6 goes to zero, for BeInt (support(w)) and the events A, and B, are 

defined by 

A, = A,@, 6, E) = 
is 

p(xnle)w(8)dedc Nsp(x7e)w(e)d0 , 
N’, s 

<(l+s)(e’-e)‘1(8)(8’-8) for all eywvs), 

in which Nd = {@:I 8’- 13) < 6) and the inner product defining the norm is with respect 

to r(e), i.e. (fJ-0’(2 is defined to be (e-e’)‘l(e)(e- 0’). Conditions 1 and 2 imply the 

equivalence of neighborhoods defined by the relative entropy D(Pe 11 PO,) and neigh- 

borhoods defined by 1Q-8’/2. Indeed, it can be shown that there exist constants c’ and 

6,, (possibly depending on K,) such that 

{8’:le-8’12~62/C’2}~{~:~(PeI(PB,)~~2}C(e’:le-~I2~62C~2} (2.11) 

for Ot6<6, and all 0 in K,. 
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An analogous lower bound on the remainder is possible. We have from Clarke and 

Barron (1990, (4.12)-(4.15), p. 464), 

+(nPi((BnnC,)C))‘i2 (Eg’(X, 0,s))“’ 

+P;((B,nC,)“) 
( 

ilog &+log T) 

ds d 

+2(1-s) 2 
---log(l +s)-log(1 -2di2e-E*n6218)+~(S, e), (2.12) 

where the event C,(@,s) is defined by 

and the function g(x, 8,6) is defined by 

g(x,e,6)= SUP (e~-e)t~i0gp(~~e~f). 
8’ @“EN 2 d 

Theorem 1 will be established once the remainder terms in (2.10) and (2.12) 

are shown to be asymptotically negligible uniformly over K. in the interior of the 

support of w. In the course of the proof we will show that Pe((.4,nB,)C)=o(1/10gn) 

uniformly on &, which implies the lower bound. For the upper bound we must 

obtain three results, namely that P,((B,nC,)“)=O(l/n) uniformly on Ko, the Eg and 

Eg2 tend to zero as 6-O and that EsS’,1(8)S,(B)1~,“~,,.~0 under the second part of 

Condition 1. We note that the slightly higher moment required there is not atypical 

since it provides uniform rates of convergence in the central limit theorem for S,. The 

proofs presented here are a refinement of the methods used in the doctoral disserta- 

tion of Clarke (1989). 

3. Proof of Theorem 1 

We start by noting that Pe(Cc(8,E))=O(l/n). Indeed, by applying Markov’s 

inequality we have that 
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Next, we that Pe(Bc(B,6,s))=O(l/n). Clarke and (1990, 

p. we have 

+ p;;(II; k(G)_1, ,(e)l >c/d2) 1 . (3.2) 

Each of the first terms in the summands of (3.2) is bounded by a function which is 

0(l/(na2)), uniformly for t?~K,. Indeed, by Chebyshev’s inequality each is bounded 

by (l6d2/(ne2))E((J~(Yj,k-EYj,~,~))2)=(16d2/(~E2))Var~ Yj,k,l in which yj,k is the 

mean of Yj,k,i(e,6)=SUp~B.~~~<6((a2/aejaek)logp(X,18)-(~2/~ejaek)logp(XiI8’)1 and 

6, depending.on E, is so small that E Yj,k,i < e/4d2. By Condition 1 and the compactness 

ofK0, Vars Yj,k,l is bounded uniformly for BeKo. The second terms in the summands 

of (3.2) can be bounded from above in a similar fashion. Since there are finitely many 

terms, expression (3.2) is O(l/ne2), as required. 

Next we deal with P&l,‘) by a more involved argument. Consider the set 

u,(e)= w(B')p(XnIB')de'>e-nr'p(XnIB) 

for r’ ~0. For r >O we have that P,(Afi) is bounded above by 

PO w(O')p(X"I @)d&e” 
s 

w(eyp(xy) de’ 
N; 

6Pe p(X”le)<e”(*+r’) 
( s 

w(B’)p(X”j 8’) de 
Ni > 

+Po enr 
iS 

w(~)p(x~~e~)dekp(~~~e) (3.3) 
N, 

by intersection with U, and Vi. The second term is uniformly 0(1/n) on compact sets: 

this term is upper bounded by taking an integral over a smaller neighborhood of 

0 with 6 replaced by 6,= l/J;. 0 ne can show that W(Na,), where W is the measure 

defined by w, is bounded below by a constant times (l/n)d’2, uniformly for 8 in KO. 

Using this, one can apply Markov’s inequality to the absolute value of the logarithm 

of the density ratio so as to obtain an upper bound on the second term of the form 

2(D(Pz II M,( . I N6,)) + 2e- ‘)/nJ, for n large enough, where M,(. (Nan) is the distribu- 

tion with density given by m(x”INd,)=SN,“w(el)p(xn18’)de’/ W(N,J. The relative 
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entropy in the numerator of the upper bound can be bounded from above by 

a constant c by a convexity argument. Now one has 2c(l+2e-‘)/nr’ as the upper 

bound on the second term, uniformly for 8 in KO. For details, see Clarke and Barron 

(1990, pp. 469-470). Now, it is enough to show that the first term on the right-hand 

side is of order O(eenr”) for some r” >O. 

Let G={F1,Fz, . ..} b e a countable field of sets generated by balls of the form 

1x1 dx(x, sj) d l/k}, w h ere dx is the metric on the separable space X, the sequence 

Slr.92, ... is a countable sequence of points which is dense in X, and j, k = 1,2, . . . Let 

~G(P, Q)= f’_ 2-'lf'(f'i)-Q(Fi)l. 
i=l 

Here, d, is a metric on the collection of probabilities on X for which dc(P,,P)+O 

implies that P, converges to P in distribution; see Gray (1988, pp. 251-253). 

Now let G(e)={XnId,(P,,P^)<4}. We have that there is an rg so that 

Pe(G(0)c)<e-‘rc and for 0’ with dG(Pe, Pep)>25 that Po,(G(8))6e-“‘~, where ry does 

not depend on 8. Indeed, by Hoeffding’s inequality (Hoeffding, 1963) we have that for 

any probability P 

P”(X”: d,(P,~)>5)6P” 
( 

X”: ~ 2-‘IP(Fi)-~(Fi)l>5 
i=l > 

<2kte-n~‘~2 (3.4) 

for k, > 1 +log 2/5, as shown in Clarke and Barron (1990, p. 469). Thus, 

Pe(Gc(B)) < 2kge-nr212 and, when d, (PBS, Pe)>2<, the triangle inequality gives 

Pe.(G(B)) <Pop(dG(Pos, P^)>~)<2k~e-“r”2. 

Now we can bound the first term on the right-hand side in (3.3). Intersecting the 

event in this term with G(0) and G(0)’ and applying Markov’s inequality to the first of 

these two quantities gives 

en(r + r’) & s lC@)Po’(w))de + po(wn 
N; 

The second term is exponentially small by (3.4). The first term is bounded from 

above by 

en(r+r’) 

? 

Pop (G(B)) de’. 
‘% 

Choosing r and r’ so small that r + r’-rc <O, and using (3.4), gives that this last 

expression is exponentially small as well, provided Nd contains (0’: dG( PO, PO,) d 25). 

Now we show that there is a 6 = 6, independent of 8 for which this containment is 

valid and such that 6,-+0 when t-0. First we note that by Conditions 1 and 2, the 

map 4 : B+Po is continuous. The continuous image of a compact set is again compact. 

So, when 8 is restricted to lie in a compact set K,,, the corresponding collection of 
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probability measures 4(K,) is compact in the topology of weak convergence. Further- 

more, since 4 is one-to-one (by Condition 3) as well as continuous, the restriction of 

4 to a compact set has a continuous inverse. Indeed, this inverse map is uniformly 

continuous since it is only defined on a compact set. That is, there is a uniformly 

continuous mapping that recovers 6 from PO where continuity in the collection of 

probabilities is defined by weak convergence. Since convergence in dG implies weak 

convergence, the existence of the desired 6, follows. So, for given E > 0 we choose 5 so 

small that 6, is not greater than the 6 required for the bounding of the summands of 

(3.2). Thus, the first term on the right-hand side of (3.3) is exponentially small, so we 

have that PO(AC) is 0(1/n). 

From the bounds on P,(AE) and P,(B;) it is clear that the error terms in (2.10) 

vanish uniformly in 0 on compact sets as IZ+ co and then s-+0. Thus, the lower bound 

(2.10) goes to zero uniformly over KO. 

For the upper bound (2.12), we start by noting that the uniform bounds on P&I:) 

and on PO(Ci) imply 

where CK, is a constant depending on the compact set K,. In the first two terms on the 

right-hand side of (2.12) we choose 6=8(s) so small that for given E>O we have that 

E,g2(X,e,6)<&3. (3.6) 

Then the first two terms on the right-hand side (2.12) are less than a constant times 

& uniformly in B on KO. The third and fourth terms on the right-hand side of (2.12) 

converge to zero as n+cc by using (3.5). 

It remains to show that Ees,(e)‘Z(e)S,(e)l,~~~c”)c goes to zero uniformly for 8 in 

K,,. By rearranging under the trace function, tr, we have 

=trl-‘(0) E0 &$,logp,(X”)&,logp,(X”) 
i(’ I 

)i, j 4B.K.).]. 

We show that the (i, j)th entry in the matrix goes to zero. By the Cauchy-Schwartz 

inequality it is bounded above by 

The first expectation in (3.7) is bounded, by the Holder inequality, by 

(3.8) 
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The expectation in (3.8) is bounded. By Lemma 3.1 in Ibragimov and Hasminsky 
(1981, p. 186), it is bounded above by a constant (depending on (1 +E)) times 
E,((a/aei)logpe(X”))2”‘“‘. The probability in (3.8) goes to zero by using (3.5). The 
second expectation in (3.7) is similar. 

Thus, letting n-co followed by s-+0 where 6=8(s) as prescribed shows that the 
upper bound (2.12) goes to zero uniformly on K. Thus, we have established that 

sup I Rem,(B, w)l +O 
tlEK 

as n+cc, and (2.2) is proved. 
Next, we show how (2.2) implies the other statements of the theorem. For (2.3) 

recall that K equals the support of w and that (2.2) only holds for interior points of K. 
Consequently, we consider a continuous extension of w say w’ which has support 
equal to K’ a compact set which contains K in its interior; such an extension exists 
by the Tietze Extension Theorem, see Royden (1968). Now, for,8EK, we have 
w’(e)= w(f3) and by the continuity of w’ there is a K’ so that on ‘OeK’-K, w’ is 
positive. Let the standardized form of w’ be w”(B)= w’( 19)/s,, w’( 0) de. The denomin- 
atorisoftheform l+ccwherecc=j.,_. w’(f?)de, and W*(K)= l/(1 +CY) where W* is 
the probability associated to the density w”. 

Now, for w” we can use the uniformity of (2.2), since K is a compact set in the 
that interior of K’. Thus, we have 

lim 
Is 

w(e)D(p; I 
n+m K 

Consequently, to establish (2.3) it is sufficient to bound 

and 

s w(e)iog m de- w(e)iog -de 
K wye) s K w(e) 

(3.10) 

(3.11) 

The quantity in (3.10) is non-negative and equal to 

(3.12) 

where the bound follows from noting that m,(x”)/m,~~(x”) can be written as 

(l+~)(~KW(e)p(X"~@d~)/!Kf w'(O)p(x"l @de, which is less than 1 tcr since w’ is an 
extension of w. 
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The quantity in (3.11) is equal to 

s w(d) log 
w(Q) 

-dd8=log(l +a), 
K w”( 0) 

(3.13) 

which tends to zero as K’+ K, because cx = SK I -K w’(d) dfI. [Here it is assumed that we 
hold the continuous extension w’(0) fixed while we let K’+K, so that a-+0.] 

The desired conclusion (2.3) for the asymptotic Bayes risk follows from these 
bounds. since the limit of 

W(W(Pi I I wv,n )d&( ;log$+jKw(B)log~dB)~ 

is bounded from above by the sum of the bounds from (3.9) (3.12), and (3.13). Letting 
n+cc and then K’+K gives the claimed result. 

For the determination of the minimax and maximin conclusions below, we will only 

need to use (2.3) for priors proportional to d-j, which is defined on 52. For such 
priors the extension from K to K’ is automatic so there is no need to appeal to an 
extension theorem. 

For (2.4), the conclusion about the minimax value, we recall that the minimax risk is 

R.=R(n,K,{pH})=~“f~~D(P~IlQ.), 

and for (2.5), (2.6) that the maximin risk is 

R,* = R*(n, K, (P,}) = s”,p inn 
j 

KD(P; II Q”) W(d@ 

= sup 
j 

NE II M,,w) WW, 
iv K 

in which M,,w is the distribution with density m,(x”) = S pe(x”) W(d0). We can upper 
bound the minimax risk by replacing Qn with any other estimator, the mixture 
distribution with respect to Jeffreys’ prior for instance. We consider M,, ,,,: in which 

w;,(e) is given by standardizing Jdetrce> on a compact set K’ which contains K in 
its interior. So, we have that 

R,-+dlogn<sup[D(P;III M,,,, )+flogn], 
BtK 

in which case the right-hand side is upper bounded by 

d 
zlog &+log j JdZ@dB+o(l), 

K’ 

by (2.2), for large n. Letting K’ decrease to K gives the stated result. The minimax risk 
is lower bounded by the maximin risk. In turn, the maximin risk is lower bounded by 



54 B.S. Clarke, A.R. Barron/Jeffreys’ prior 

replacing w with Jeffreys’ prior w*. So, we have that 

R,-idlogn>R,*--idlogn 

B 
s 

w*(B)D(Pe/IM,,,.)d8-~dlogn. 
K 

By (2.3), the right-hand side has 

-kdlog2ne+log KJ%?$$dfI+o(l) 
s 

as an asymptotic lower bound. Since the upper and lower bounds agree (2.4), (2.5) 
and (2.6) are proved. Jeffrey& prior is asymptotically least favorable, and we have 
identified the asymptotic minimax value, and a sequence of procedures which achieves 
it. Consequently, after subtracting $ d log n/(27ce), the quantities R,, R,*, R,(w*), 

and R,(B, w*) all have the same limiting value, log SK JZ(@d@, the latter uniformly 
for 8 in &. 

Finally, we note that no sequence of prior probabilities ( W,,)lzi 1 achieves an 
asymptotically larger value of R,(w) than Jeffreys’ prior. If ( W,,)) p 1 gives a higher 
value than R,(w*) for each fixed n, then we have that 

RAW*)< 
i 

o(P~IIM,,,“)W,(dB)~suwp 
s 

D(R;;llM,,w) W(dQ=R,*. 

However, the difference between the left- and right-hand sides is asymptotically 
negligible, as we have shown. 

4. Proof of Theorem 2 

Here we give the proof of Theorem 2 and its corollary. We use B0 to denote a fixed 
. . _ of the parameter. 

, ‘Au~f. We can rewrite the Kullback-Leibler number as 

&log $!+log -&-,,Olog[I+@;O~ $$$I. (4.1) 
0 0 

By using the inequality -log(l +x)60 for x positive we have the bound 

1 
WGo /I MrJ dlog - 

w(e,) 

which we hope is attained in the limit. To get a lower bound it is enough to upper 
bound the positive quantity 

C 

w(e) p(xnle) 
E,,log It c -___ 

0fB, w(eo) PAINT) 1 
by something which shrinks to zero as n increases. 
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Consider the set defined by 

55 

D,=D#())= 
i 
xn: 1 -____ w(e) P(X”l@ <E 

.gf& w(W P(X”l4l)’ n I . 

The set D, is the discrete analog of the set A,, defined in Section 3. Consequently, by 
the reasoning in Section 3, P&(D;)-+O when E, is chosen to be of the form emrn for 
small enough Y > 0. 

Decomposing the sample space into D, and DG, the second member of the right- 
hand side of (4.1) can be written as a sum of two terms. The first is 

J%,XD.log 1+ 1 -~ 
i 

w(e) P(X”l4 

BzB, w(e,) P(xnle,) 1 <EB,XD.log(l +emrn) 

=Pe,(D,)log(l +e-‘“)dlog(l +e-‘“), 

which clearly tends to zero as n increases. The other term tends to zero also. It is 

w(e) P(xnle) 
1+ 1 - ___ 

efe, w(e,) Pvw,) 1 

d Pe,(D:) log Ee xo: w(e) P(xni 0) 

“Pe,(D;) 
l+C----- 

BzB, w(e,) P(xnle,) 1 
= -Ps,(D~)logP,u(D~)+P,(D~)log &,xD: 1+ 

w(e) Pww 
c ___ ___ 

ozo, ww Pw7~o~ 1 
< -PB,(D~)logPe,(D~)+P,o(D~)+log 1+ 

wwwz~,~~ 1 w(e,) . 
(4.2) 

We see that both terms in (4.2) go to zero since Po,(Di)-0. Thus, we have that the 
second term on the right-hand side of (4.1) goes to zero. q 

Proof of the corollary. We have that for each 8 

O<D(P;I/M,)<log L 
wv 

and that the quantity in the middle tends pointwise to its upper bound, which is 
integrable with respect to the prior. The result follows from the dominated conver- 
gence theorem. q 

5. Interpretations of the results 

Here we briefly restate the content of our results in information-theoretic terms and 
then state a few implications for statistical inference. Bernard0 (1979), like Ibragimov 
and Hasminsky (1973), interpreted the Shannon mutual information as a measure of 
the information in channel coding and source coding. The channel coding context 
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permits the interpretation of a reference prior as that source distribution which 

achieves the maximal rate of data transmission in bits per unit time. The use of any 

other prior gives a lower rate of transmission. In this sense, Jeffreys’ prior serves as 

a reference. Furthermore, use of the reference prior method suggests that one is 

implicitly assuming there is some agent which is transmitting the data to the experi- 

menter. When this assumption is valid it provides a physical justification for the prior 

so that prior selection becomes another aspect of statistical modeling. 

5.1, Channel capacity 

An information-theoretic channel is a conditional distribution which specifies the 

probability distribution of the output received given the input sent. The input is an 

encoded representation of the message. The output has a probabilistic description 

because it is possible that the transimission was corrupted, by background noise, for 

instance. We want a high rate of transmission and we want the output received to be 

decodable so as to give the right message with high probability. The capacity of 

a channel is the supremal rate of transmission of data across a communication channel. 

Shannon’s channel coding theorem states that for any rate below the capacity there will 

exist a coding scheme which, over repeated uses of the channel, will achieve that rate 

with an arbitrarily small probability of decoding error. 

Let X be the input to a channel defined by p( ) x) and let the output be denoted by 

Y. We recall that the mutual information between two random variables X and Y is 

1(X; Y)= 
s 

P(X, Y) 1% 
P(% Y) 

pdxdy, 
P(X)P(Y) 

where p(x, y) is the joint density of (X, Y) and p(x), p(y) denotes the marginal densities 

for X, Y. The capacity of the channel defined by p(ylx) is 

C=supI(X; Y). 
P(X) 

Suppose that we have one broadcaster sending the same encoded message X to 

each of k receivers Y,, . . . , Y,, which are conditionally independent and identically 

distributed given X. Intuitively, this means that the noise which interferes with the 

signal received by any one receiver is independent of the noise that interferes with the 

signal received by any other receiver. Thus, the conditional distribution defining the 

channel is 

P(Y 1, ... ,YklX)= fi P(YiIx). 
i=l 

When a block of coded data xi, . . . ,x, is sent, the ith receiver, i between 1 and k, picks 

up y’;, . . . ,yk. Suppose the k receivers decode cooperatively, i.e. they pool their data 

and then estimate the message sent. Then, the capacity of the resulting channel is 

c$=supI(X; Yk). 
P(X) 
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We can relate the present case to the statistical context by letting X correspond to 

the parameter and Yk correspond to the random sample. Thus, p(x) takes the role of 

the density of the prior, and p(yjx) takes the role of the density of the i.i.d. random 

variables. Denoting the Fisher information for the density by I(x), with x = (xi, . . . , xd) 

varying over a compact set in lRd, and the entropy of X by H(X), we have that 

Z(X; Y*)=ilog $+H(X)+ 
s 

p(x)logdetZ(x)dx+o(l), 

under the same assumptions as in Theorem 1 except for a change in notation. As 

a result, we have that the capacity of k receivers, Ck, is 

ck=;log &+logc, 
where c=j Jdet Z(x)dx. Observe that this formula is asymptotic in k, the number of 

receivers, and not in the length of the data stream. 

When the input arises from a continuous distribution, it is seen that Jeffreys’ prior is 

the source distribution which achieves the capacity. Using a different source distribu- 

tion would give the rate of transmission as the corresponding mutual information and 

be strictly less than the capacity. Since the capacity increases as the logarithm of the 

number of receivers, there are coding schemes which achieve rates of transmission 

arbitrarily close to (42) log(k/2xe) + c when k is large. A similar interpretation can be 

given in the discrete case provided the entropy can be maximized. 

5.2. Universal noiseless source coding 

An alternative interpretation of R,(B, w), R,(w), and R, can be stated in terms of the 

redundancy of universal noiseless source coding. For ease of exposition we consider 

the case where the Xi’s are discrete. Suppose we want a variable length binary code so 

as to encode a block of data X” for transmission, but that the underlying density 

governing X” is only known to be a member of the smooth parametric family {pe}. We 

seek a code which is universal in the sense that it will perform well no matter which 

element of the parametric family is true. 

In this context, a code’s performance is assessed by its expected codelength, which 

we want to be small. It is well known that the lower bound on the expected codeword 

length is the entropy of the distribution. Cosequently, we minimize the redundancy 

which is the difference between the expected codelength of the code we use and the 

entropy bound which can be achieved to within one bit when the true distribution is 

known. Indeed, if 8 were the true value of the parameter, and were known, we would 

use the Shannon code which has codelengths given by log l/p,(X): a code with these 

lengths is guaranteed to exist by the Kraft-McMillan theorem (see Blahut (1987, p. 

50)) and achieves the entropy bound to within one-bit roundoff error. If 0 is not 

known then a Bayesian would use a code with lengths log l/m(X”). 
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Indeed, typically 8 is not known. To verify the Bayesian’s intuition, consider a code 
(4) with codelengths given by I(b(X”)). Then Q,,(X”)=2- u(‘“)) is a subprobability 
mass function and, for a fixed 0, the redundancy of {4} is EB I(d(X”))-H(Pi)= 
D(Pi 11 Qn). If we integrate this redundancy with respect to a prior density w(0) then we 
obtain the Bayes redundancy of the code (4). By definition, the Bayes code is the code 
which achieves the minimal Bayes redundancy. Performing this minimization it is seen 
that the Bayes code has codelengths log l/m(X”). Consequently, R,(8, w)= D(Pi (1 M,) is 
the pointwise redundancy of the Bayes code, and R,(w) = 1 w(@)R(Q, w) de is the Bayes 
redundancy of the Bayes code. Theorem 1 gives an asymptotic expression for the 
pointwise redundancy R,(B, w) which is uniformly good on compact sets. Also, Theorem 
1 gives an asymptotic expression for the Bayes redundancy R,(w). 

Analogously, the minimax code achieves the minimax redundancy 
minQn max@D(Pg I/ Q,,) and the maximin code achieves the maximin redundancy 
max, mina, s w(B)D(Pi I/ M,)dB. Theorem 1 shows that the minimax code and the 
maximin code are asymptotically the same, and gives an asymptotic expression for the 
common redundancy. Also, it is seen that the asymptotically minimax (or maximin) 
code has codelengths specified by log l/m,,,*(X”) to within one-bit roundoff error, 
where w* is Jeffreys’ prior. 

If the Xi’s are continuous and can be quantized arbitrarily finely, this interpretation 
holds in a limiting sense. Also, if the parameter is discrete, Theorem 2 says that the 
number of extra bits required by coding based on m, rather than pe is the Shannon 
codelength of the true parameter value under the prior. 

5.3. Bounds on the cumulative risk 

Suppose that we have a parametric family indexed by 6’ and that we want to identify 
the true density peO, but that it is not the true value of the parameter that interests us. 
One natural estimator of p(x 10,) at any given x is the predictive density fl,( .), the 
posterior mean of p(x) 0). If the relative entropy is used as the loss function for 
parametric density estimation, one can examine the behavior of the cumulative risk. 

Let &for k=O,..., n- 1 be a sequence of density estimators. Each & estimates the 
density of Xk+ i, given the data X k. When 8,, is true, the risk associated with 
6,= s,(X’) is EO, D(PB, 11 dk), and the cumulative risk over the first n uses of the 
sequence of estimators is the sum of the individual risks C(n, do, 6)= 

C;: A EO, D( PO, I( &j. The sum of the risks plays an important role in universal coding 
theory, sequential estimation, hypothesis testing and portfolio selection theory; see 
Clarke and Barron (1990). 

Proposition 1. The cumulative risk of the sequence of Bayes fin is 

n-l 

C(n,RA)= 2 EB,D(P~~II(~~)=D(P;;,IIM,), 
k=O 



B.S. Clarke, A.R. BarronlJeffieys’ prior 59 

under the convention that j,,(x)=m, (x1). Its cumulative Bayes risk is 

Under the assumptions of Theorem 1, the minimax risk is asymptotically realized by 

choosing w to be the JefSreys’ prior which is asymptotically least favorable. Conse- 
quently, the cumulative risk, Bayes risk and minimax risk are asymptotically approxi- 

mated by expressions of the form id log n + c. 

Proof. This is a restatement of Theorems 0 and 1. cl 

An analogous result can be stated for the risk and Bayes risk in the discrete case 
using Theorem 2. A general result for the minimax risk can only be stated when the 
entropy can be maximized. 

Alternatively, if the parameter value is of interest, then estimating it can be regarded 
as a special case of density estimation where we restrict the estimator of the density to 
be of the form p(x 10(X”)). Enlarging the class of estimators we see that the Bayes 
risk in parametric density estimation lower-bounds the Bayes risk in parametric 
estimation: 

i;fE,E,D(O 11 G)>i;fE,E,,D(P, 11 Q). 

Similarly, for the minimax risk we have 

i$ s;p& D(O II 6)>i;f sup & D(P, II Q), 
8 

where 6 is an estimator of the parameter, Q is an estimator of the density and 
D(6’ I( 6) = D(PO /I Pa) is the relative entropy loss for parameter estimation. (A similar 
statement holds for the maximin risk.) Thus, Theorems 1 and 2 are seen to give 
asymptotic lower bounds on the minimax (and maximin) cumulative risk of parameter 
estimation. 
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