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ABSTRACT One approach for facilitating pro-
tein function prediction is to classify proteins into
functional families. Recent studies on the classifica-
tion of G-protein coupled receptors and other pro-
teins suggest that a statistical learning method,
Support vector machines (SVM), may be potentially
useful for protein classification into functional fami-
lies. In this work, SVM is applied and tested on the
classification of enzymes into functional families
defined by the Enzyme Nomenclature Committee of
IUBMB. SVM classification system for each family is
trained from representative enzymes of that family
and seed proteins of Pfam curated protein families.
The classification accuracy for enzymes from 46
families and for non-enzymes is in the range of 50.0%
to 95.7% and 79.0% to 100% respectively. The corre-
sponding Matthews correlation coefficient is in the
range of 54.1% to 96.1%. Moreover, 80.3% of the 8,291
correctly classified enzymes are uniquely classified
into a specific enzyme family by using a scoring
function, indicating that SVM may have certain
level of unique prediction capability. Testing re-
sults also suggest that SVM in some cases is capable
of classification of distantly related enzymes and
homologous enzymes of different functions. Effort is
being made to use a more comprehensive set of
enzymes as training sets and to incorporate multi-
class SVM classification systems to further enhance
the unique prediction accuracy. Our results suggest
the potential of SVM for enzyme family classifica-
tion and for facilitating protein function prediction.
Our software is accessible at http://jing.cz3.nus.
edu.sg/cgi-bin/svmprot.cgi. Proteins 2004;55:66–76.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

Determination of protein function is essential for under-
standing biological processes.1,2 Computational tools for
protein function prediction have been developed1,3–5 using
a variety of methods including sequence similarity,6–8

evolutionary analysis,9,10 hidden Markov models,11 struc-
tural consideration,12,13 protein/gene fusion,14,15 protein
interaction,16,17 motifs,18 neural-networks,11,19 and fam-
ily classification by sequence clustering.20,21 In the ab-
sence of clear sequence or structural similarities, the

criteria for comparison of distantly-related proteins be-
come increasingly difficult to formulate.20 Moreover, not
all homologous proteins have analogous functions.10 The
presence of shared domain within a group of proteins does
not necessarily imply that these proteins perform the same
function.22 Many proteins sharing promiscuous domains
are known to have very different functions.15 These prob-
lems have prompted effort and interest in developing new
clustering algorithms21 and exploring novel approaches
that combine or complement existing methods.5,10,20,23

One approach for facilitating protein function prediction
is to classify proteins into functional families. A statistical
learning method, support vector machines (SVM),24 has
recently been used for classification of G-protein coupled
receptors25 and DNA-binding proteins26 from their pri-
mary sequences, both families contain proteins of diverse
sequence distributions. Moreover, SVM has been used in a
number of other protein studies including prediction of
protein-protein interaction,17 fold recognition,27,28 study
of solvent accessibility29 and structure prediction.30,31 The
prediction accuracy derived from these studies ranges
from 65% to 91.4%, suggesting the potential of SVM in
facilitating the study of various protein classification
problems. Because of its ability in classifying proteins of
diverse sequences, SVM is expected to be particularly
useful for the classification of distantly related proteins
and it can thus be used to complement sequence similarity
and clustering methods.

Instead of direct comparison or clustering of sequences,
SVM classification is based on the analysis of physicochem-
ical properties of a protein derived from its primary
sequence.25–27,29–31 Samples of proteins known to be in a
class (positive samples) and those not in the class (nega-
tive samples) are used to train a SVM classification system
to recognize specific features and classify proteins either
into the class or outside the class. Such an approach may
be applied to classification of both distantly-related pro-
teins and other proteins into their respective functional
families. Proteins of specific functional family share com-
mon structural and chemical features essential for perform-
ing similar functions.32 Given sufficient samples of pro-
teins of specific function, SVM may be trained and used to

*Correspondence to: Y.Z. Chen, Department of Computational
Science, National University of Singapore, Blk SOC1, Level 7, 3
Science Drive 2, Singapore 117543, Singapore. E-mail:
yzchen@cz3.nus.edu.sg

Received 29 May 2003; Accepted 24 October 2003

PROTEINS: Structure, Function, and Bioinformatics 55:66–76 (2004)

© 2004 WILEY-LISS, INC.



TABLE I. List of Enzyme Families Studied in this Work, Statistics of Datasets and Prediction Results†

Enzyme family (EC number)

Training set
Testing set Independent evaluation set

Positive Negative
Positive Negative Positive Negative Qp

(%)
Qn
(%) CTP FN TN FP TP FN TN FP

Oxidoreductases acting on the
CHOOH group of donors
(EC 1.1)

383 896 743 23 1384 9 452 54 932 60 89.3 94.0 0.830

Oxidoreductases acting on the
aldehyde or oxo group of
donors (EC 1.2)

256 1127 233 3 1156 13 200 32 972 23 86.2 97.7 0.852

Oxidoreductases acting on the
CHOCH group of donors
(EC 1.3)

170 871 91 5 1429 2 75 33 985 15 69.4 98.5 0.738

Oxidoreductases acting on the
CHONH2 group of donors
(EC 1.4)

80 459 60 3 1836 7 44 13 992 10 77.2 99.0 0.782

Oxidoreductases acting on the
CHONH group of donors
(EC 1.5)

129 1129 42 0 1117 3 35 33 983 21 51.5 97.9 0.541

Oxidoreductases acting on
NADH or NADPH (EC 1.6)

434 776 729 3 1516 15 531 42 971 33 92.7 96.7 0.897

Oxidoreductases acting on
other nitrogenous compounds
as donors (EC 1.7)

86 1088 24 1 1224 0 36 10 1003 3 78.3 99.7 0.844

Oxidoreductases acting on a
sulfur group of donors
(EC 1.8)

106 734 74 3 1580 2 56 30 1005 2 65.1 99.8 0.780

Oxidoreductases acting on a
heme group of donors
(EC 1.9)

122 480 712 0 1817 0 400 18 995 5 95.7 99.5 0.961

Oxidoreductases acting on
diphenols and related
substances as donors
(EC 1.10)

48 431 23 0 1879 0 22 10 1005 0 68.8 100 0.825

Oxidoreductases acting on a
peroxide as acceptor
(EC 1.11)

89 569 95 0 1740 2 73 14 997 7 83.9 99.3 0.865

Oxidoreductases acting on
single donors with
incorporation of
molecular oxygen
(oxygenases) (EC 1.13)

83 721 52 1 1581 9 46 10 1001 4 82.1 99.6 0.863

Oxidoreductases acting on
paired donors, with
incorporation or reduction of
molecular oxygen (EC 1.14)

201 1146 157 2 1166 3 127 24 993 13 84.1 98.7 0.855

Oxidoreductases acting on
superoxide as acceptor (EC
1.15)

60 1196 58 2 1119 1 54 7 1007 0 88.5 100 0.938

Oxidoreductases acting on CH2
groups (EC 1.17)

65 1197 58 6 1121 0 46 12 1006 2 79.3 99.8 0.865

Oxidoreductases acting on iron-
sulfur proteins as donors (EC
1.18)

64 814 47 1 1501 0 41 11 1006 0 78.8 100 0.883

Transferases transferring one-
carbon groups (EC 2.1)

486 1184 330 0 1103 1 287 76 920 74 79.1 92.6 0.717

Transferases transferring
aldehyde or ketone residues
(EC 2.2)

Acyltransferases (EC 2.3) 302 1001 246 0 1284 4 196 44 966 27 81.7 97.3 0.812
Glycosyltransferases (EC 2.4) 427 1180 264 2 1110 5 245 58 933 64 80.9 93.6 0.739
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recognize proteins possessing characteristics of a particu-
lar function.17, 25, 26

In this work, the usefulness of SVM for classification of
proteins into functional families is tested on enzymes from
46 enzyme families. Enzymes represent the largest and
most diverse group of all proteins, catalyzing chemical

reactions in the metabolism of all organisms. Enzymes are
well classified into functional families according to the
recommendation by the classification of enzyme nomencla-
ture committee of IUBMB.33 Therefore enzymes are ideal
for comprehensive testing of the capability of SVM classifi-
cation systems. SVM is also evaluated for its capability in

TABLE I. (Continued)

Enzyme family (EC number)

Training set
Testing set Independent evaluation set

Positive Negative
Positive Negative Positive Negative Qp

(%)
Qn
(%) CTP FN TN FP TP FN TN FP

Transferases transferring alkyl
or aryl groups, other than
methyl groups (EC 2.5)

320 1024 225 0 1284 1 197 53 964 39 78.8 96.1 0.766

Transferases transferring
nitrogenous groups (EC 2.6)

132 1109 79 2 1206 1 71 19 995 12 78.9 98.8 0.806

Transferases transferring
phosphorus-containing
groups (EC 2.7)

1133 1334 1024 2 581 4 1217 195 759 202 86.2 79.0 0.652

Transferases transferring
sulfur-containing groups
(EC 2.8)

60 541 22 1 1772 1 19 14 1003 2 57.6 99.8 0.715

Hydrolases acting on ester
bonds (EC 3.1)

760 1295 453 5 966 13 381 155 892 93 71.1 90.6 0.636

Glycosylases (EC 3.2) 337 867 379 2 1397 13 268 49 939 51 84.5 94.8 0.792
Hydrolases acting on ether

bonds (EC 3.3)
54 843 29 0 1474 1 35 5 1008 0 87.5 100 0.933

Hydrolases acting on peptide
bonds (peptidases) (EC 3.4)

436 1188 240 4 1112 3 217 59 959 43 78.6 95.7 0.760

Hydrolases acting on carbon-
nitrogen bonds, other than
peptide bonds (EC 3.5)

414 1145 181 3 1137 2 199 73 931 60 73.2 93.9 0.683

Hydrolases acting on acid
anhydrides (EC 3.6)

693 1089 770 2 1196 2 646 75 951 42 89.6 95.8 0.860

Carbon-carbon lyases (EC 4.1) 546 1145 776 5 1113 17 547 62 881 105 89.8 89.4 0.782
Carbon-oxygen lyases (EC 4.2) 505 1231 382 1 1047 2 324 79 915 77 80.4 92.2 0.727
Carbon-nitrogen lyases (EC 4.3) 96 803 86 2 1514 0 67 12 999 9 84.8 99.1 0.854
Carbon-sulfur lyases (EC 4.4) 40 1194 18 11 1118 0 15 15 1004 1 50.0 99.9 0.679
Phosphorus-oxygen lyases

(EC 4.6)
63 989 26 0 1319 1 23 21 1002 2 52.3 99.8 0.684

Racemases and epimerases
(EC 5.1)

144 830 72 0 1464 8 65 29 981 19 69.1 98.1 0.708

Cis-trans-isomerases (EC 5.2) 78 673 24 0 1643 0 32 17 1005 2 65.3 99.8 0.776
Intramolecular oxidoreductases

(EC 5.3)
230 950 174 2 1355 9 159 21 982 25 88.3 97.5 0.851

Intramolecular transferases
(EC 5.4)

144 1172 55 2 1132 7 65 26 997 7 71.4 99.3 0.788

Intramolecular lysases (EC 5.5) 22 1196 14 4 1121 0 14 2 1006 1 87.5 99.9 0.902
Other isomerases (EC 5.99) 68 705 73 0 1597 7 58 8 994 9 87.9 99.1 0.864
Ligases forming carbon-oxygen

bonds (EC 6.1)
281 1115 381 1 1185 13 286 29 980 27 90.8 97.3 0.883

Ligases forming carbon-sulfur
bonds (EC 6.2)

81 947 71 0 1362 2 53 18 1001 3 74.6 99.7 0.831

Ligases forming carbon-
nitrogen bonds (EC 6.3)

381 1133 358 2 1148 3 294 57 946 45 83.8 95.5 0.801

Ligases forming carbon-carbon
bonds (EC 6.4)

48 963 26 0 1347 1 29 4 1003 1 87.9 99.9 0.919

Ligases forming phosphoric
ester bonds (EC 6.5)

30 1198 16 10 1095 0 18 8 979 3 69.2 99.7 0.765

†The results are given in TP (true positive), FN (false negative), TN (true negative), FP (false positive), Qp and Qn (Unique accuracy for prediction
of positive and negative samples), C (Matthews correlation coefficient). Number of positive or negative samples in testing and independent
evaluation sets is TP ! FN or TN ! FP respectively. Updated results are given at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.
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the classification of distantly related enzymes and homolo-
gous enzymes of different function.

METHODS

Enzyme families are obtained from BRENDA data-
base.32 There are 46 enzyme families found to have
substantial number of enzymes in Swiss-Prot database.34

Sufficient number of samples is needed to train a SVM
classification system for accurate classification, thus only
these 46 families are studied in this work. Table I gives the
list of enzyme families together with the number of
enzymes in each family used for training, testing, and
evaluating SVM classification system for that family.

All distinct members in each enzyme family found in
Swiss-Prot database34 are used to construct positive
samples for training SVM. The negative samples corre-
sponding to each enzyme family are selected from seed
proteins of the curated protein families in the Pfam
database.35 Those seed proteins known to not belong to the
enzyme family under study are used as negative samples
for that family. Negative samples of each family include
representative enzymes in all the other enzyme families
and non-enzyme proteins such as receptors, transporters,
channels, and other non-enzyme proteins. An example of
the composition of negative samples in an enzyme family
EC2.7 is given in Table II. There are cases such that
particular proteins can be positive for more than one
family and these are only included in the respective
positive training set and excluded in the negative training
set. Also, the EC number of some enzymes may not be
specified at the time of our data collection, some of which
may be tentatively included in the negative training set.

In most cases, there are multiple entries in the Swiss-
Prot database for each distinct protein in each enzyme
family. Thus, after the selection of the training set for a
family, there is a sufficient number of entries left in
Swiss-Prot database for construction of separate sets of
both positive and negative samples for that family. This
allows one to optimize and test the SVM training system
for each family by using separate testing sets and to
evaluate the prediction results by using independent
evaluation sets of both positive and negative samples.
While possible, all the remaining distinct enzymes in each
family (not in its training set) are used as positive samples
and all the remaining representative seed proteins in
Pfam curated families are used to construct negative
samples in a testing set and an independent evaluation
set. For proteins that belong to more than one families,
they are only included in the positive training, testing, and
independent evaluation set of a particular family under
study. No duplicate enzyme is used in the training, testing,
and independent evaluation set for each family.

Training sets of both positive and negative samples can
be optimized by exchanging the incorrectly classified
samples in the corresponding testing sets with non-support-
vector samples in the training sets so that all the essential
proteins that optimally represent each family are retained
in the training sets. These essential proteins carry distinct
structural and physicochemical features important to char-

acterize the members of each family and those outside the
family. The support vectors of the positive and negative
samples for that family are generated from these proteins.

Prediction accuracies of statistical learning methods are
typically evaluated by methods such as n-fold cross valida-
tion.27 Our SVM system is trained by using optimized
training sets which include all the essential proteins in a
family. In an n-fold cross validation study, it is difficult to
keep all these essential proteins within a training set.
Thus in this work, evaluation of prediction accuracy is
conducted by using independent evaluation sets. As will be
presented in the results and discussion section of this
paper, the derived prediction accuracies from our method

TABLE II. Composition of the Negative Samples
for EC2.7 Family†

Family Number of entries
EC 1.1 10
EC 1.2 3
EC 1.3 17
EC 1.4 6
EC 1.5 2
EC 1.6 7
EC 1.7 2
EC 1.8 1
EC 1.9 24
EC 1.10 8
EC 1.11 4
EC 1.13 4
EC 1.14 1
EC 1.15 3
EC 1.18 2
EC 2.1 11
EC 2.3 20
EC 2.4 20
EC 2.5 4
EC 3.1 30
EC 3.2 33
EC 3.3 2
EC 3.4 12
EC 3.5 9
EC 3.6 33
EC 4.1 28
EC 4.2 18
EC 4.4 7
EC 4.6 5
EC 5.1 7
EC 5.4 3
EC 5.5 1
EC 5.99 9
EC 6.1 1
EC 6.2 1
EC 6.3 20
EC 6.4 6
EC 6.5 9
Receptors 17
Transporters 53
Channels 11
Other proteins 1455

†Here “other proteins” include proteins know to not belong to any of
the families listed and those enzymes whose EC number is not
specified at the time of our data-collection.
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is similar to those derived from 10-fold cross validation
study.

Every enzyme sequence is represented by specific fea-
ture vectors assembled from encoded representations of
tabulated residue properties including amino acid compo-
sition, hydrophobicity, normalized van der Waals volume,
polarity, polarizability, charge, surface tension, secondary
structure, and solvent accessibility for each residue in the
sequence.17,25–27,29–31 There is some level of overlap in the
descriptors for hydrophobicity, polarity, and surface ten-
sion, which may be reduced by principle component analy-
sis (PCA). Our own study suggests that the use of the
PCA-reduced descriptors only moderately improves the
accuracy for some of the families. It is thus unclear to
which extent this overlap affects the accuracy of SVM
classification. It is noted that reasonably accurate results
have been obtained in various protein classification stud-
ies using these overlapping descriptors.17,25–27,29–31

Three descriptors, composition (C), transition (T), and
distribution (D), are used to describe global composition of
each of the properties described above.36,37 C is the
number of amino acids of a particular property (such as
hydrophobicity) divided by the total number of amino
acids. T characterizes the percent frequency with which
amino acids of a particular property is followed by amino
acids of a different property. D measures the chain length
within which the first, 25%, 50%, 75% and 100% of the
amino acids of a particular property is located respectively.

A hypothetical protein sequence AEAAAEAEEAAAAAE-
AEEEAAEEAEEEAAE, as shown in Figure 1, has 16
alanines (n1 " 16) and 14 glutamic acids (n2 " 14). The
composition for these two amino acids are n1# 100.00/
(n1 ! n2) " 53.33 and n2 # 100.00/(n1 ! n2) " 46.67
respectively. There are 15 transitions from A to E or from
E to A in this sequence and the percent frequency of these
transitions is (15/29) # 100.00 " 51.72. The first, 25%,
50%, 75%, and 100% of As are located within the first 1, 5,
12, 20, and 29 residues respectively. The D descriptor for
As is thus 1/30 # 100.00 " 3.33, 5/30 # 100.00 " 16.67,
12/30 # 100.00 " 40.0, 20/30 # 100.00 " 66.67, 29/30 #
100.00 " 96.67. Likewise, the D descriptor for Es is 6.67,
26.67, 60.0, 76.67, 100.0. Overall, the amino acid composi-
tion descriptors for this sequence are C " (53.33, 46.67),
T " (51.72), and D " (3.33, 16.67, 40.0, 66.67, 96.67, 6.67,
26.67, 60.0, 76.67, 100.0) respectively.

Descriptors for other properties can be computed by a
similar procedure, and all the descriptors are combined to
form the feature vector of a protein. In most studies, amino
acids are divided into three classes for each property and

thus the three descriptors for each property consist of 21
elements: 3 for C, 3 for T, and 15 for D.17,25–27,29,30,36,37

The constructed feature vectors of both positive samples
(examples of enzymes in a particular family) and negative
samples (those do not belong to a particular family) are
then input into SVM classification system to train it to
identify features that separate positive and negative
samples. The trained SVM systems can thus be used to
classify an enzyme into either the positive group or the
negative group of each family. This enzyme is predicted to
be a member of a family if it is classified into the positive
group of that family. Likewise, it is predicted to not belong
to a family if it is classified into the negative group of that
family. The theory of SVM has been described in the
literature.17,24–27,29–31 Thus only a brief description is
given here. SVM is based on the structural risk minimiza-
tion (SRM) principle from statistical learning theory.24 In
linearly separable cases, SVM constructs a hyperplane
which separates two different groups of feature vectors
with a maximum margin. A feature vector is represented
by xi, with physicochemical descriptors of a protein as its
components. The hyperplane is constructed by finding
another vector w and a parameter b that minimizes !w!2

and satisfies the following conditions:

w ! xi ! b " ! 1, for yi # ! 1 Group 1 (positive)

(1)

w ! xi ! b $ % 1, for yi # % 1 Group 2 (negative)

(2)

where yi is the group index, w is a vector normal to the
hyperplane, "b"/!w! is the perpendicular distance from the
hyperplane to the origin and !w!2 is the Euclidean norm of
w. After the determination of w and b, a given vector xi

can be classified by:

sign$(w ! x% ! b] (3)

In nonlinearly separable cases, SVM maps the input
variable into a high dimensional feature space using a
kernel function K(xi, xj). An example of a kernel function is
the Gaussian kernel which has been extensively used in
different studies:17,24–27,29–31

K&xi,xj% # e % !xj % xi!2/2'2 (4)

Based on earlier study27,38 and our own analysis, Gauss-
ian kernel function seems to produce better results than
other kernel functions. Linear support vector machine is
applied to this feature space and then the decision function
is given by:

f&x% # sign#$
i # 1

l

(i
0yiK&x, xi% ! b% (5)

where the coefficients (i
0 and b are determined by maximiz-

ing the following Langrangian expression:

Fig. 1. Hypothetical sequence for illustration of derivation of the
feature vector of a protein.
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$
i # 1

l

(i %
1
2 $

i # 1

l $
j # 1

l

(i(jyiyjK&xi, xj% (6)

under conditions:

(i " 0 and $
i # 1

l

(iyi # 0 (7)

A positive or negative value from Eq. (3) or Eq. (5)
indicates that the vector x belongs to the positive or
negative group respectively. To further reduce the complex-
ity of parameter selection, hard margin SVM with thresh-
old instead of soft margin SVM39 with threshold is used.
We have developed our own SVM program SVM!26 using
the sequential minimal optimization (SMO) algorithm,40

RBF kernel and parameters C3) (for hard margin) and '
value of 5–35 for different enzyme families. RBF kernel is
used because it has been commonly used in other SVM
protein studies with consistently better performance than
other kernels such as linear and polynomial.27,38 Our own
analysis on enzyme family classification suggests that the
prediction accuracy using RBF kernel is at least 5% more
than that using polynomial kernel.

As in the case of all discriminative methods,24,41 the
performance of SVM classification can be measured by the
quantity of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). Because the
number of positive and negative samples for each family is
imbalanced, two accuracies Qp and Qn are introduced to
measure the accuracy of positive prediction (proteins
belong to an enzyme family) and negative prediction
(proteins do not belong to an enzyme family):

Qp #
TP

TP ! FN

Qn #
TN

TN ! FP (8)

Another quantity suitable for evaluating the classifica-
tion accuracy of imbalanced positive and negative samples
is the Matthews correlation coefficient C,42 which is given
by:

C #
TP ! TN % FN ! FP

&&TP ! FN%&TP ! FP%&TN ! FN%&TN ! FP%
(9)

RESULTS AND DISCUSSION
Assessment of Overall Accuracy of SVM Enzyme
Family Classification

The results for the classification of the 46 enzyme
families are given in Table I. All the computed TP, TN, FP,
and FN for the testing sets and independent evaluation
sets of these families are given in the Table. Table I also
gives the classification accuracies Qp and Qn and Mat-
thews correlation coefficient C for every family measured
by using independent evaluation sets. The computed Qp,
Qn and C for the 46 enzyme families are in the range of
50.0% to 95.7%, 79.0% to 100%, and 54.1% to 96.1%

respectively. These numbers on average are slightly im-
proved from that obtained in other SVM studies of pro-
teins.17,24–27,29–31 One possible reason for this improve-
ment is the use of representative proteins of Pfam curated
families as negative samples for SVM classification, which
provides a more comprehensive sampling of proteins not
belonging to an enzyme family.

Table III gives a list of a number of randomly selected
enzyme entries from Swiss-Prot database34 that are not
correctly classified into the corresponding family by SVM!.
Amino acid sequence of each of these enzyme entries is
examined to determine whether or not the classification
error is caused by sequence-related problems such as
fragment, incomplete chain, and mutations. As shown in
Table II, these sequence-related problems do not appear to
be a significant factor for the classification error.

BLAST sequence alignment of each of these enzymes
against other members of its family suggests that a
substantial portion (61.3%) of these incorrectly classified
enzymes are of low sequence similarity to most of the other
members in its family, i.e., the sequence similarity score E
value of each of these enzymes against most members of its
family is significantly higher than 0.05. The percentage of
low sequence similarity proteins in a family is not expected
to be very high. Therefore, our study seems to suggest that
sequence distance has certain level of influence on the
accuracy of SVM classification.

Several other factors may also affect the classification
accuracy. One is the sequence diversity of protein samples
in a functional family. It is likely that not all possible types
of proteins are adequately represented in some functional
classes. This can be improved along with the availability of
more protein data. SVM prediction may be further im-
proved by using a more comprehensive and refined set of
protein descriptors. SVM optimization procedure and fea-
ture vector selection algorithm may also be improved by
adding additional constraints, and by incorporating inde-
pendent component analysis and kernel PCA in the prepro-
cessing steps.

The quality of our SVM classification system of a particu-
lar enzyme family can be further assessed by means of
direct two-way tests. For such a purpose, a set of 3000
enzymes in a randomly selected enzyme family EC1.6 is
used for testing the accuracy of positive classification for
that family. It is found that 76.8% of these enzymes are
correctly classified into the EC1.6 family by our SVM
system. A set of 2850 randomly selected non-enzyme
proteins is used for assessing the accuracy of negative
classification for that enzyme family. It is found that 98.5%
of these non-enzyme proteins are correctly classified as not
belonging to the EC1.6 family.

Comparison Between Results From our Evaluation
Method and Those of 10-Fold Cross Validation

In this work, independent evaluation sets are used to
determine the accuracy of enzyme family classification.
To examine whether it can provide sufficiently accurate
assessment of prediction accuracy, the results from
three randomly selected families using our evaluation
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method are compared with those from a 10-fold cross
validation study. Table IV, Table V, and Table VI give
the results of the 10-fold cross validation study for the

EC1.9, EC4.4, and EC5.2 family respectively. For com-
parison, the results from our study are also included in
the respective Table. It is found that the computed Qp,

TABLE III. Randomly Selected Enzyme Entries From Swiss-Prot Database Which are Not Correctly
Classified Into the Corresponding Family by SVM!†

EC Family
number

Swiss Prot
AC number Protein name Sequence feature

Sequence similarity to
other members of family

EC 1.1 Q8YH79 Alcohol dehydrogenase C L
EC 1.14 P79078 Delta-9 fatty acid desaturase C S
EC 1.14 Q8TE42 Truncated steroid 21-hydroxylase IC L
EC 1.14 P14791 Heme oxygenase C L
EC 1.2 O67724 N-acetyl-*-glutamyl-phosphate reductase C L
EC 1.2 Q57658 Aspartate-semialdehyde dehydrogenase C L
EC 2.1 Q9ZE37 tRNA (Guanine-N(1)-)-methyltransferase C S
EC 2.1 Q9PJ28 Methionyl-tRNA formyltransferase C S
EC 2.1 Q9UX08 Aspartate carbamoyltransferase C L
EC 2.1 P96111 PyrBI protein C L
EC 2.7 Q9JR61 Phosphatidylserine synthase C L
EC 2.7 Q9ZE96 Phosphatidylglycerophosphate synthase C L
EC 3.1 Q62087 Serum paraoxonase/arylesterase 3 C L
EC 3.1 Q97VT7 Aryldialkylphosphatase, putative C S
EC 3.2 Q9EVP3 Stx2fA protein subunit C, subunit L
EC 3.2 Q9S9E4 rRNA-glycosidase C L
EC 3.2 Q41216 Trichosanthin C L
EC 3.5 P32320 Cytidine deaminase C, subunit L
EC 3.5 Q01432 AMP deaminase 3 C, subunit L
EC 3.5 Q49135 Methenyltetrahydrofolate cyclohydrolase C, subunit S
EC 4.2 P73715 Endonuclease III C S
EC 4.2 Q8RI68 Cystathionine gamma-synthase C S
EC 4.3 Q8XMJ8 Argininosuccinate lyase C S
EC 5.1 Q980W1 UDP-glucose 4-epimerase C S
EC 5.1 P21955 Aldose 1-epimerase C L
EC 5.3 P29954 Mannose-6-phosphate isomerase C S
EC 5.4 Q8Z8D7 UDP-galactopyranose mutase C S
EC 6.1 Q8YH72 Alanyl-tRNA synthetase C L
EC 6.1 Q9ZDF8 Lysyl-tRNA synthetase C L
EC 6.1 Q9HJM5 Glutamyl-tRNA synthetase C L
EC 6.1 Q55486 Arginyl-tRNA synthetase C L
EC 6.3 P57245 Carbamoyl-phosphate synthase, small chain C, chain S
†C—Complete sequence; IC—Incomplete sequence; C, subunit—Complete sequence of subunit; C, chain—Complete sequence of chain; L—Low
sequence similarity to other enzymes in a particular family; S—Significant sequence similarity to other enzymes in a particular family.

TABLE IV. Ten-fold Cross Validation Results of EC1.9 Family†

Fold number

Training set
Testing set

Evaluation

Positive Negative
Positive Negative

Qp (%) Qn (%) CTP FN TN FP
1 1127 2967 119 6 327 3 95.2 99.1 0.950
2 1127 2967 119 6 328 2 95.2 99.4 0.955
3 1126 2968 119 7 325 4 94.4 98.7 0.939
4 1127 2967 116 9 330 0 92.8 100 0.950
5 1127 2967 122 3 327 3 97.6 99.1 0.967
6 1127 2967 115 10 330 0 92.0 100 0.945
7 1126 2968 121 5 328 1 96.0 99.7 0.967
8 1126 2968 117 9 326 3 92.8 99.1 0.933
9 1127 2967 113 12 327 3 90.4 99.1 0.916
10 1127 2967 120 5 326 4 96.0 98.7 0.950
Average 94.2 99.3 0.947
Our method 95.7 99.5 0.961
†The result from our method is included for comparison.
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Qn, and C for each of these families using our method is
roughly similar to those obtained by using 10-fold cross
validation study. This suggests that our method may be
used to assess the quality of SVM enzyme family
classification, with a similar level of accuracy as that of
n-fold cross validation study.

Classification of Distantly Related Enzymes

Certain proteins with very low sequence similarity to
each other are known to have similar function.20,43–45 The
low sequence similarity nature of these distantly related
proteins makes it difficult to use conventional sequence
alignment and clustering methods. It has thus prompted
the introduction of novel approaches for functional predic-
tion of distantly related proteins. These include neural
network analysis of conserved motifs,43 energy analysis,46

structure-dependent sequence alignment,47 and sequence
clustering-based family classification using pre-computed
sequence similarity information.21

In this work 24 randomly selected distantly related
enzymes in seven different families, shown in Table VII,

are used to test the capability of SVM classification of
distantly related enzymes. These include two aminotras-
ferases from EC2.6 family,48 three kinases from EC2.7
family,44,49 eight glycosyl hydrolases from EC3.2 family,45

three proteases from EC3.4 family,50–52 and eight en-
zymes from EC2.1, 3.5 and 6.1 families. Sequence similar-
ity score E value for each of these enzymes from BLAST
search against most members of its family is significantly
higher than 0.05, the commonly accepted threshold for
similarity proteins. Fourteen (14) enzymes are correctly
classified, which accounts for 58.3% of all distantly related
enzymes studied. This suggests that, to a certain extent,
SVM can be used for classification of distantly related
enzymes.

The ability of SVM in classification of some distantly
related enzymes likely results from the use of a combina-
tion of physicochemical properties to represent an en-
zyme. In some cases, enzyme function is determined by
specific structural and chemical features at substrate
binding sites, and these features are shared by distantly
related as well as other enzymes of the same family.32

TABLE V. Ten-fold Cross Validation Results of EC4.4 Family†

Fold number

Training set
Testing set

Evaluation

Positive Negative
Positive Negative

Qp (%) Qn (%) CTP FN TN FP
1 89 2985 5 5 332 0 50.0 100 0.701
2 90 2894 7 2 333 0 77.7 100 0.879
3 89 2985 6 4 332 0 60.0 100 0.769
4 89 2985 6 4 331 1 60.0 99.6 0.710
5 89 2985 6 4 332 0 60.0 100 0.769
6 89 2985 5 5 332 0 50.0 100 0.701
7 89 2986 8 2 331 0 80.0 100 0.891
8 89 2986 5 5 331 0 50.0 100 0.701
9 89 2986 8 2 331 0 80.0 100 0.891
10 89 2986 9 1 330 1 90.0 99.6 0.897
Average 65.7 99.9 0.791
Our method 50.0 99.9 0.679
†The result from our method is included for comparison.

TABLE VI. Ten-fold Cross Validation Results of EC5.2 Family†

Fold number

Training set
Testing set

Evaluation

Positive Negative
Positive Negative

Qp (%) Qn (%) CTP FN TN FP
1 136 2990 11 4 333 0 73.3 100 0.851
2 136 2990 12 3 333 0 80.0 100 0.890
3 137 2989 9 5 334 0 64.2 100 0.795
4 137 2989 9 5 334 0 64.2 100 0.795
5 137 2990 8 6 333 0 57.1 100 0.749
6 136 2991 7 8 332 0 46.7 100 0.675
7 134 2993 11 6 330 0 64.7 100 0.797
8 134 2993 12 5 330 0 70.5 100 0.833
9 136 2991 10 5 331 1 66.7 99.7 0.770
10 136 2991 12 3 331 1 80.0 99.7 0.853
Average 66.7 99.9 0.800
Our method 65.3 99.8 0.776
†The result from our method is included for comparison.
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Some of these function-related features might be cap-
tured by the residue properties such as hydrophobicity,
normalized van der Waals volume, polarity, polarizabil-
ity, charge, surface tension,53,54 secondary structure
and solvent accessibility which are used in the construc-
tion of the SVM! feature vectors for the enzymes. It is
thus expected that, upon proper training with suffi-
ciently diverse set of enzymes, SVM! may be potentially
used for the classification of certain types of distantly
related enzymes that share common structural and
chemical features.

Not all distantly related proteins of the same function
have similar structural and chemical features. There are
cases in which different functional groups, un-conserved
with respect to position in the primary sequence, mediate
the same mechanistic role, due to the flexibility at the
active site.55 This plasticity is unlikely to be sufficiently
described by the physicochemical descriptors used in
SVM!. Therefore SVM! in the present form is not ex-
pected to be capable of classification of these types of
distantly related enzymes.

Classification of Homologous Enzymes of Different
Functions

Homologous proteins not necessarily have analogous
function.10 It is thus useful to develop protein function
prediction methods that can distinguish homologous pro-
teins of different functions. The function of a protein is
determined by a variety of factors. Changes such as local
active-site mutation, variations in surface loops, and re-
cruitment of additional domains may result in functional
diversity among homologous proteins.56 While these
changes appear to be small at the local sequence level,
some of the aspects of these changes may be reflected in
the residue properties such as hydrophobicity, normalized
van der Waals volume, polarity, polarizability, charge,
surface tension, secondary structure and solvent accessibil-
ity used in SVM!. It is thus of interest to examine whether
SVM! is useful for classification of homologous enzymes of
different functions.

In this work, SVM! is tested on four pairs of homologous
enzymes of different families. These enzyme pairs are

TABLE VII. Assessment of SVM! Classification of Distantly Related Enzymes

Classification of distantly related enzymes
Swiss-Prot
AC number Family

Correctly classified
by SVM

PyrBlprotein (EC 2.1.3.2) P96111 EC 2.1 No
Alanine aminotransferase (EC 2.6.1.2) P24298 EC 2.6 Yes
Histidinol-phosphate aminotransferase 2 (EC 2.6.1.9) Q8Y0Y8 EC 2.6 Yes
Casein kinase I homolog cki1 (EC 2.7.1.+) P40233 EC 2.7 No
MUK (EC 2.7.1.37) Q63796 EC 2.7 Yes
PRP4 kinase (EC 2.7.1.37) Q13523 EC 2.7 No
6-phospho-,-glucosidase (EC 3.2.1.86) Q46130 EC 3.2 Yes
,-galactosidase I (EC 3.2.1.23) P19668 EC 3.2 Yes
,-mannanase/endoglucanase A precursor (EC 3.2.1.78) P22533 EC 3.2 Yes
Cellulose-growth-specific protein precursor (EC 3.2.1.4) Q00023 EC 3.2 Yes
Chitinase 1 precursor (EC 3.2.1.14) P46876 EC 3.2 No
Endo-1, 4-,-xylanase C precursor (EC 3.2.1.8) P26220 EC 3.2 Yes
Endoglucanase A precursor (EC 3.2.1.4) P29719 EC 3.2 Yes
Mannosyl-oligosaccharide glucosidase (EC 3.2.1.106) Q13724 EC 3.2 Yes
Botulinum neurotoxin type A Precursor (EC 3.4.24.69) P10845 EC 3.4 No
Methionine aminopeptidase (EC 3.4.11.18) O58362 EC 3.4 Yes
Xaa-Pro aminopeptidase 2 [Precursor](EC 3.4.11.9) O43895 EC 3.4 Yes
Allantoinase (EC 3.5.2.5) P40757 EC 3.5 No
Dihydropyrimidinase (EC 3.5.2.2) Q14117 EC 3.5 Yes
Urea amidohydrolase (EC 3.5.1.5) P94669 EC 3.5 Yes
Alanyl-tRNA synthetase (EC 6.1.1.7) Q8YH72 EC 6.1 No
Lysyl-tRNA synthetase (EC 6.1.1.6) Q9ZDF8 EC 6.1 No
Arginyl-tRNA synthetase (EC 6.1.1.19) Q55486 EC 6.1 No
Glutamyl-tRNA synthetase (EC 6.1.1.17) Q9HJM5 EC 6.1 No

TABLE VIII. Assessment of SVM! Classification of Homologous Enzymes of Different Functions

Enzyme 1(E1)
Family 1

(F1) Enzyme 2(E2)
Family 2

(F2)

Similarity
Score

E-Value Classification

Glycolate oxidase(P05414) 1.1 IPP isomerase(Q8PW37) 5.3 3.00E-07 E13F1; E23F2
Creatinase(P38488) 3.5 Xaa-Pro dipeptidase(O58885) 3.4 3.00E–15 E13F1; E23F1, F2
Cystathionine gamma-synthase(P38675) 4.2 Methionine gamma-lyase(P13254) 4.4 2.00E–15 E13F1; E23F1, F2
Cystathionine gamma-synthase(P38676) 4.2 Cystathionine gamma-lyase(Q8VCN5) 4.4 1.00E–12 E13F1; E23F1, F2

E13F1 indicates classification of enzyme E1 into family F1.
E23F1, F2 indicates classification of enzyme E2 into both family F1 and family F2.
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shown in Table VIII. Mixed results are obtained. While all
eight enzymes are correctly classified into their respective
family, only five of them are not classified into the family of
their respective homolog, representing 62.5% of all the
homologous enzymes studied here. It is however difficult
to accurately assess the capability of SVM! classification
of homologous enzymes of different functions based on the
small number of homologous enzymes studied here. Fur-
ther analysis is needed to provide a more objective assess-
ment.

A Limitation of the SVM Classification Systems
Developed in this Work

The SVM classification systems developed in this work
are based on the two-class classification platform. One
class contains proteins in a particular enzyme family, and
another class consists of representative proteins outside of
this family that includes both enzymes of the remaining 45
enzyme families and non-enzymes. For those enzymes that
are simultaneously classified into more than one enzyme
families, our classification systems may not be able to
uniquely predict which family each of these enzymes
belongs to.

Of the 8,291 enzymes correctly classified in this work,
6,658 or 80.3% of them are uniquely classified into a
specific enzyme family using a scoring function.30 Overall,
the majority of the enzymes can be uniquely predicted by
our classification systems, suggesting that our classifica-
tion systems have certain level of unique prediction capa-
bility. None-the-less, the capability of unique prediction
needs to be further enhanced by introducing methods that
can further classify the non-uniquely classified enzymes
into specific enzyme family. Multi-class classification ap-
proach27 may be employed for such a purpose. In the
multi-class classification approach, 46 additional SVM
enzyme classification systems are trained, each from a
positive set of all the enzymes in each enzyme family and a
negative set of all the enzymes in the remaining 45 enzyme
families. The non-uniquely classified enzymes are then
tested against the 46 additional SVM classification sys-
tems. The unique family for each of these enzymes might
be predicted either as that with the largest decision
function value or by pair-wise classification with respect to
multiple families.27 Work is in progress to use a more
comprehensive set of enzymes as the training sets and to
develop the multi-class SVM enzyme classification sys-
tems by using more than 80,000 distinct enzyme sequence
entries found from protein sequence databases.

CONCLUDING REMARKS

Our study suggests the potential of SVM in classification
of enzymes into functional families. Moreover, it shows
certain level of capability for classification of distantly
related enzymes and homologous enzymes of different
functions. When classifying an unknown protein, one does
not know which family it might belong to. A screening
process can be designed to scan all the families to deter-
mine which family it belongs to. Such a screening ap-
proach is also useful for classification of proteins that

belong to multiple families. Further improvements on
protein functional family coverage, sample collection, multi-
class prediction models, and classification algorithm may
enable the development of SVM into a useful tool for
facilitating protein function prediction. Effort is being
made to use a more comprehensive set of enzymes as the
training sets to train SVM classification systems and to
incorporate multi-class SVM classification systems to fur-
ther enhance the unique prediction accuracy of our sys-
tems.
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