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Abstract

As a continuous effort to develop automated methods for predicting membrane protein types that was initiated by Chou and

Elrod (PROTEINS: Structure, Function, and Genetics, 1999, 34, 137–153), the support vector machine (SVM) is introduced.

Results obtained through re-substitution, jackknife, and independent data set tests, respectively, have indicated that the SVM

approach is quite a promising one, suggesting that the covariant discriminant algorithm (Chou and Elrod, Protein Eng. 12 (1999)

107) and SVM, if effectively complemented with each other, will become a powerful tool for predicting membrane protein types and

the other protein attributes as well.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A cell is enclosed by the plasma membrane (cell
envelope). Inside the cell there are various organelles
such as the endoplasmic reticulum, Golgi apparatus,
mitochondria, and other membrane-bound organelles.
Although the basic structure of biological membranes
is provided by the lipid bilayer, most of the specific
functions are carried out by the membrane proteins.
Among membrane proteins, some of them are trans-
membrane proteins. They contain one or more trans-
membrane segments with one or more hydrophobic
segments to ensure stable association with the hydro-
phobic interior of the membrane, and hence is relatively
easily discriminated from non-membrane proteins (Rost
et al., 1995). The other membrane proteins are anchored
membrane proteins. They do not have the hydrophobic
membrane spanning portions, but they have a consensus
sequence motif at either the N- or C-terminus. So they
also can be relatively easily discriminated from non-
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membrane proteins (Casey, 1995; Resh, 1994). In this
paper, the discrimination is confined within the scope
of membrane proteins only. This is because membrane
proteins can be reliably distinguished by using existing
methods, as elaborated by many previous investigators
(Chou, 2000; Chou and Elrod, 1999a; Reinhardt and
Hubbard, 1998).
The way that a membrane-bound protein is associated

with the lipid bilayer usually reflects its function. For
example, the transmembrane proteins can function on
both sides of membrane and transport molecules from
one side to the other; whereas the proteins that
associated with one side of the lipid monolayer can
only function on that side. Accordingly, it would greatly
expedite the process of determining the function of
new proteins if an automated method is available to
identify the types of membrane proteins. For a detailed
discussion about this, see a recent review (Chou, 2000).
The first automated method for identifying membrane
protein type and location was developed by Chou and
Elrod (1999a). In that pioneer study, membrane proteins
were classified into (1) type I membrane protein, (2) type
II membrane protein, (3) multipass transmembrane
proteins, (4) lipid chain-anchored membrane proteins,
and (5) GPI-anchored membrane proteins (see Figs. 1–3
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of Chou and Elrod, 1999a). A much more brief and clear
illustration about the five membrane protein types can
also be found in Fig. 3 of Chou (2001) or Fig. 3 of
Chou (2002). Based on such a classification scheme, the
elegant covariant discriminant algorithm, which is a
combination of the Mahalanobis distance (Mahalano-
bis, 1936) and Chou’s invariance theorem (Chou, 1995),
was introduced for identifying the type for a given
membrane protein Chou and Elrod (1999a).
In this paper, we would like to propose a different

approach, i.e. the SVM to deal with this problem.
2. Support vector machine

Support vector machines are a kind of learning
machine based on statistical learning theory. The most
remarkable characteristics of SVMs are the absence of
local minima, the sparseness of the solution, and the use
of the kernel-induced feature spaces. The basic idea of
applying SVMs to pattern classification can be outlined
as follows. First, map the input vectors into a feature
space (possible with a higher dimension), either linearly
or non-linearly, which is relevant to the selection of the
kernel function. Then, within the feature space, seek an
optimized linear division; i.e. construct a hyperplane
which can separate two classes (this can be extended to
multi-classes) with the least error and maximal margin.
The SVMs training process always seeks a global
optimized solution and avoids over-fitting, so it has
the ability to deal with a large number of features. A
complete description to the theory of SVMs for pattern
recognition is given in the book by Vapnik (1998).
Support vector machines have been used to deal

with protein fold recognition (Ding and Dubchak,
2001), protein–protein interaction prediction (Bock
Fig. 1. Schematic drawing showing the following five types of membrane

multipass transmembrane, (d) lipid-chain anchored membrane, and (e) GPI-

and type II membrane proteins are of single-pass transmembrane, type I has a

plasma membrane or organelle membrane, respectively, while the arrangemen

such distinction was drawn between the extracellular (or luminal) and cytopla

Reproduced from Fig. 3 of Chou (2001) with permission.
and Gough, 2001) and protein secondary structure
prediction (Hua and Sun, 2001).
In this paper, the Vapnik’s SVM (Vapnik, 1995) was

introduced to predict protein sub-cellular location.
Specifically, the SVMlight, which is an implementation
(in C Language) of SVM for the problems of pattern
recognition, was used for computations. The optimiza-
tion algorithm used in SVMlight can be found in
Joachims (1999). Given a set of N samples, i.e. a series
of input vectors

XkARt ðk ¼ 1;y;NÞ; ð1Þ

where Xk can be regarded as the kth protein or vector
defined in the 20-D space according to the amino acid
composition (Chou, 1995), and Rt is a Euclidean space
with t dimensions. Thus, all the relevant mathematical
principles can be found in the aforementioned refer-
ences, and hence there is no need to repeat here.
However, there is one point that needs to be explicitly

addressed here. Although SVM only deal with two-class,
the multi-class identification problem can always be
converted into a two-class identification problem. In this
paper which actually involves a five-class problem, we
used the ‘‘all-versus-all’’ method to transfer it into a
two-class problem (Ding and Dubchak, 2001).
3. Results and discussion

The same training data set originally constructed by
Chou and Elrod (1999a) was used for the current study.
It contains 2059 membrane protein sequences, of which
435 are type I transmembrane proteins (Fig. 1a), 152
type II transmembrane proteins (Fig. 1b), 1311 multi-
pass transmembrane proteins (Fig. 1c), 51 lipid-chain
anchored membrane proteins (Fig. 1d), and 110 GPI
anchored membrane proteins (Fig. 1e). The names of
proteins: (a) type I transmembrane, (b) type II transmembrane, (c)

anchored membrane. As shown from the figure, although both type I

cytoplasmic C-terminus and an extracellular or luminal N-terminus for

t of N- and C-termini in type II membrane proteins is just reverse. No

smic sides for the other three types in the current classification scheme.
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the 2059 membrane proteins, classified into five groups,
were given in Table 1 of Chou and Elrod (1999a).
Following (Chou and Elrod, 1999a), a protein is

represented by a point or a vector in a 20-D space
according to its amino acid composition. In other
words, the amino acid composition was taken as the
input for the SVM operation. The computations were
carried out on a Silicon Graphics IRIS Indigo work-
station (Elan 4000). The width of the Gaussian RBFs
selected was such that it minimized an estimate of the
VC-dimension. The parameter C that controlled the
error-margin trade-off was set at 100. After being
trained, the hyperplane output by the SVM was
obtained, indicating that the trained model had the
function to identify the membrane protein types.
The demonstration was conducted by three most

typical approaches in statistical prediction (Chou and
Zhang, 1995); i.e. the re-substitution test, jackknife test,
and independent data set test, as reported below.

3.1. Re-substitution test

The so-called re-substitution test is an examination
for the self-consistency of an identification method.
When the re-substitution test is performed for the
current study, the sub-cellular location of each protein
in the data set is in turn identified using the rule
parameters derived from the same data set, the so-called
training data set. The success rate thus obtained for the
five membrane protein types (Fig. 1) were successively
417/435=95.9%, 131/152=86.2%, 1292/1311=98.6%,
50/51=98.0%, and 90/110=81.8%, with an overall rate
of 1980/2059=96.2%, indicating that after being
trained, the SVMs model has grasped the complicated
relationship between the amino acid composition and
the types of membrane proteins. However, during the
process of the re-substitution test, the rule parameters
derived from the training data set include the informa-
tion of the query protein later plugged back in the test.
This will certainly underestimate the error and enhance
the success rate because the same proteins are used to
derive the rule parameters and to test themselves.
Accordingly, the success rate thus obtained represents
some sort of optimistic estimation (Cai, 2001; Chou,
1995; Chou and Elrod, 1999b; Zhou, 1998; Zhou and
Assa-Munt, 2001; Zhou and Doctor, 2003). Never-
theless, the re-substitution test is absolutely necessary
because it reflects the self-consistency of an identifica-
tion method, especially for its algorithm part. An
identification algorithm certainly cannot be deemed as
a good one if its self-consistency is poor. In other words,
the re-substitution test is necessary but not sufficient for
evaluating an identification method. As a complement, a
cross-validation test for an independent testing data set
is needed because it can reflect the effectiveness of an
identification method in practical application. This is
important especially for checking the validity of a
training database: whether it contains sufficient infor-
mation to reflect all the important features concerned so
as to yield a high success rate in application.

3.2. Jackknife test

As is well known, the independent data set test, sub-
sampling test and jackknife test are the three methods
often used for cross-validation in statistical prediction.
Among these three, however, the jackknife test is
deemed as the most effective and objective one; see,
e.g. Chou and Zhang (1995) for a comprehensive
discussion about this, and Mardia et al. (1979) for the
mathematical principle. During jackknifing, each pro-
tein in the data set is in turn singled out as a tested
protein and all the rule-parameters are calculated based
on the remaining proteins. In other words, the sub-
cellular location of each protein is identified by the rule
parameters derived using all the other proteins except
the one that is being identified. During the process of
jackknifing both the training data set and testing data
set are actually open, and a protein will in turn move
from one to the other. The overall success rate thus
obtained for the 2059 membrane proteins was 1655/
2059=80.4%, which is 3.6% higher than the corre-
sponding success rate obtained by the covariant
discriminant algorithm (Chou and Elrod, 1999a).

3.3. Independent data set test

Moreover, as a demonstration of practical applica-
tion, predictions were also conducted for an indepen-
dent data set based on the rule-parameters derived from
the 2059 proteins in the training data set. The
independent data set was also adopted from Chou and
Elrod (1999a). It consists of 2625 membrane proteins, of
which 478 are type I transmembrane proteins, 180 type
II transmembrane proteins, 1867 multi-pass transmem-
brane proteins, 14 lipid-chain anchored membrane
proteins, and 86 GPI anchored membrane proteins.
The overall success rate was 2243/2625=85.4%, which
is 4.5% higher than the corresponding success rate
obtained by the covariant discriminant algorithm (Chou
and Elrod, 1999a).
Finally, it is instructive to conduct an analysis of the

sequence identity for the membrane proteins studied
here. The sequence identity percentage between two
protein sequences is defined as follows. Suppose the
maximum number of residues matched by sliding one
sequence along the other is M ; and the alignment length
is L; the sequence identity between the two sequences is
defined as M=L: The treatment for gaps is according to
CLUSTALW (Thompson et al., 1994). The average
sequence identities obtained by the sequence match
operation for the 5 membrane protein subsets (Fig. 1) in
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the training data set are 0.079581, 0.079658, 0.077192,
0.101482, and 0.079054, respectively. From these data
we can see that the majority of sequences in a same
subset have very low sequence identity, a clear indica-
tion of exclusion of redundant and homologous
sequences, which is fully consistent with the redun-
dancy-excluding procedures described in Chou and
Elrod (1999a) during constructing the working data sets.
4. Conclusion

The results obtained from the current study, together
with those by the covariant discriminant prediction
algorithm (Chou and Elrod, 1999a), have indicated that
the types of membrane proteins is considerably correlated
with their amino acid composition. For the case studied
here, the SVM yields better results than the covariant
discriminant algorithm; but for some others, e.g. in the
case of predicting the G-protein coupled receptor
(GPCR) type (Chou and Elrod, 2002), the outcomes
were just reverse. Therefore, in practical application, it
would be wise to complement the two prediction
algorithms with each other. To further improve the
prediction quality, it is necessary to take into account the
sequence-order effect. How to develop a statistical
prediction algorithm that can effectively reflect the
sequence-order effect is a critical challenge in this area.
References

Bock, J.R., Gough, D.A., 2001. Predicting protein-protein interactions

from primary structure. Bioinformatics 17, 455–460.

Cai, Y.D., 2001. Is it a paradox or misinterpretation. Proteins: Struct.

Funct. Genet. 43, 336–338.

Casey, P.J., 1995. Protein lipidation in cell signalling. Science 268,

221–225.

Chou, K.C., 1995. A novel approach to predicting protein structural

classes in a (20-1)-D amino acid composition space. Proteins:

Struct. Funct. Genet. 21, 319–344.

Chou, K.C., 2000. Review: prediction of protein structural classes and

subcellular locations. Curr. Protein Peptide Sci. 1, 171–208.

Chou, K.C., 2001. Prediction of protein cellular attributes using

pseudo-amino-acid-composition. Proteins: Struct. Funct. Genet.
43, 246–255 (Erratum: Proteins: Struct. Funct. Genet. 2001, Vol.

44, 60).

Chou, K.C., 2002. A new branch of proteomics: prediction of protein

cellular attributes. In: Weinrer, P.W., Lu, Q. (Eds.), Gene Cloning

& Expression Technologies. Eaton Publishing, Westborough, MA,

pp. 57–70 (Chapter 4).

Chou, K.C., Elrod, D.W., 1999a. Prediction of membrane protein

types and subcellular locations. Proteins: Struct. Funct. Genet. 34,

137–153.

Chou, K.C., Elrod, D.W., 1999b. Protein subcellular location

prediction. Protein Eng. 12, 107–118.

Chou, K.C., Elrod, D.W., 2002. Bioinformatical analysis of G-protein-

coupled receptors. J. Proteome Res. 1, 429–433.

Chou, K.C., Zhang, C.T., 1995. Review: prediction of protein

structural classes. Crit. Rev. Biochem. Mol. Biol. 30, 275–349.

Ding, C.H., Dubchak, I., 2001. Multi-class protein fold recognition

using support vector machines and neural networks. Bioinfor-

matics 17, 349–358.

Hua, S.J., Sun, Z.R., 2001. A novel method of protein secondary

structure prediction with high segment overlap measure: support

vector machine approach. J. Mol. Biol. 308, 397–407.

Joachims, T., 1999. Making large-scale SVM learning practical. In:

Sch .olkopf, B., Burges, C.J.C., Smola, A.J. (Eds.), Advances

in Kernel Methods—Support Vector Learning. MIT Press,

Cambridge, pp. 169–184.

Mahalanobis, P.C., 1936. On the generalized distance in statistics.

Proc. Natl Inst. Sci. India 2, 49–55.

Mardia, K.V., Kent, J.T., Bibby, J.M., 1979. In: Multivariate Analysis.

Academic Press, London, pp. 322, 381.

Reinhardt, A., Hubbard, T., 1998. Using neural networks for

prediction of the subcellular location of proteins. Nucleic Acids

Res. 26, 2230–2236.

Resh, M.D., 1994. Myristylation and palmitylation of Src family

members: the fats of the matter. Cell 76, 411–413.

Rost, B., Casadio, R., Fariselli, P., Sander, C., 1995. Transmembrane

helices predicted at 95% accuracy. Protein Sci. 4, 521–533.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTALW:

improving the sensitivity of progressive multiple sequence

alignment through sequence weighting, positions-specific gap

penalties and weight matrix choice. Nucleic Acids Res. 22,

4673–4680.

Vapnik, V., 1998. Statistical Learning Theory. Wiley, New York.

Vapnik, V.N., 1995. The Nature of Statistical Learning Theory.

Springer, Berlin.

Zhou, G.P., 1998. An intriguing controversy over protein structural

class prediction. J. Protein Chem. 17, 729–738.

Zhou, G.P., Assa-Munt, N., 2001. Some insights into protein

structural class prediction. Proteins: Struct. Funct. Genet. 44,

57–59.

Zhou, G.P., Doctor, K., 2003. Subcellular location prediction of

apoptosis proteins. Proteins: Struct. Funct. Genet. 50, 44–48.


	Application of SVM to predict membrane protein types
	Introduction
	Support vector machine
	Results and discussion
	Re-substitution test
	Jackknife test
	Independent data set test

	Conclusion
	References


