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Support Vector Machines for Automated Gait
Classification

Rezaul K. Begg*, Member, IEEE, Marimuthu Palaniswami, Senior Member, IEEE, and Brendan Owen

Abstract—Ageing influences gait patterns causing constant
threats to control of locomotor balance. Automated recognition of
gait changes has many advantages including, early identification
of at-risk gait and monitoring the progress of treatment outcomes.
In this paper, we apply an artificial intelligence technique [sup-
port vector machines (SVM)] for the automatic recognition of
young-old gait types from their respective gait-patterns. Minimum
foot clearance (MFC) data of 30 young and 28 elderly partici-
pants were analyzed using a PEAK-2D motion analysis system
during a 20-min continuous walk on a treadmill at self-selected
walking speed. Gait features extracted from individual MFC
histogram-plot and Poincaré-plot images were used to train the
SVM. Cross-validation test results indicate that the generaliza-
tion performance of the SVM was on average 83.3% ( 2 9) to
recognize young and elderly gait patterns, compared to a neural
network’s accuracy of 75 0 5 0%. A “hill-climbing” feature
selection algorithm demonstrated that a small subset (3–5) of gait
features extracted from MFC plots could differentiate the gait
patterns with 90% accuracy. Performance of the gait classifier was
evaluated using areas under the receiver operating characteristic
plots. Improved performance of the classifier was evident when
trained with reduced number of selected good features and with
radial basis function kernel. These results suggest that SVMs can
function as an efficient gait classifier for recognition of young and
elderly gait patterns, and has the potential for wider applications
in gait identification for falls-risk minimization in the elderly.

Index Terms—Feature selection, gait analysis, histogram, min-
imum foot clearance, Poincaré plot, support vector machines.

I. INTRODUCTION

OVER the years many research projects have been under-
taken documenting kinematic, kinetic and electromyo-

graphic gait characteristics in the elderly (cf. [1]–[3]). One of
the aims is to identify gait variables that reflect gait degenera-
tion due to ageing that might have closer linkage to the causes
of falls. This would help to undertake appropriate measures to
prevent falls. Like in many other developed countries, falls in
older population has been identified as a major health issue
in Australia, costing the community $billion per annum
[4]. Among the various fall types, tripping and slipping during
walking has been identified to account for % of all falls [5].
While some research in ageing gait has looked at time-distance
variables (e.g., walking speed, stance/swing times, step length),
e.g., [6], others have carried out in detail biomechanical analyses
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Fig. 1. Vertical displacement of toe marker for one gait cycle (foot contact to
foot contact) showing the occurrence of MFC event during mid swing (toe-off
to foot contact) phase.

to investigate differences between young and elderly popula-
tions; e.g., joint reaction forces, moments, powers [1]. It has
been suggested that more sensitive gait variables such as foot
clearance during walking over the walking surface should be
used to describe age-related declines in gait in an effort to find
predictors of falls risk [7].

Minimum foot clearance (MFC) during walking (see Fig. 1),
which occurs during the mid-swing phase of the gait cycle, is
defined as the minimum vertical distance between the lowest
point under the front part of the shoe/foot and the ground, has
been identified as an important gait parameter in the successful
negotiation of the environment in which we walk. This is mainly
because of the fact that during this MFC event, the foot travels
very close to the walking surface (mean MFC
cm) with a maximum forward velocity (4.6 m/s) [1]. The liter-
ature also suggests a decrease in MFC height ( cm)
with ageing [1]. This small mean MFC value combined with the
variability in MFC data ( – cm) has the potential to
cause tripping during walking, especially for unseen obstacles
or obstructions, thereby providing a strong rationale for MFC
being associated with tripping during walking, and implication
for trip-related falls in older population.

Early identification of at-risk gait in older population provides
theopportunity toundertakemeasures toprevent falls.Atpresent,
research in the area of automatic identification of gait types from
their gait features is less prevalent. Neural network (NN) tech-
nology has been employed to classify various gait types. For in-
stance, Barton and Lees [8] applied NN to differentiate simulated
gait (e.g., leg length discrepancy) using features from lower-limb
joint-anglemeasures,whileHolzreiterandKohle[9]appliedNNs
for classification of normal and pathological gait using force plat-
form recordings of foot-ground reaction forces. Recently, sup-
portvectormachines(SVMs),amachinelearningtechnique,have
been shown to be a powerful tool for learning from data and for
solvingclassificationandregressionproblemswithsuperiorclas-
sification performance [10]–[14].
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Fig. 2. An example of two-class (+& o) problem showing optimal separating
hyperplane (dotted line) that SVM uses to divide two groups’ data, and the
associated Support Vectors. Data shown by ‘cross’ and ‘circle’ represent binary
class +1 and �1, respectively.

In this paper, we propose to apply SVM technique for au-
tomated recognition of gait pattern changes due to ageing. As
MFC heights are more likely to be associated with tripping
during walking [7], [15] and these values tend to decrease with
ageing [1], features derived from MFC distributions and plots
were used to develop young-old classification models. This
type of classification capability could potentially lead to many
future SVM applications particularly as gait diagnostics: For
example, SVM can be trained in a similar way to detect elderly
fallers from their gait characteristics so that necessary measures
can be undertaken to prevent injurious falls. The selection of
SVM technology is primarily driven by the ability of the SVM
to build improved predictive models. Unlike NNs, SVMs find
an optimal separating hyperplane that provides superior gener-
alization ability especially when the dimension of input data is
high and the number of observations available for developing or
training the model is limited [16]. Finally, classification results
of the SVM classifier were compared with those obtained by
a traditional NN with back propagation learning algorithm to
compare their suitability as a gait classifier.

II. SUPPORT VECTOR MACHINE (SVM)

A. Overview of SVM

SVMs are a relatively new machine learning tool and has
emerged as a powerful technique for learning from data and
in particular, for solving binary classification problems. SVMs
originate from Vapnik’s statistical learning theory [10], and
they formulate the learning problem as a quadratic optimization
problem whose error surface is free of local minima and has
global optimum [17]. In a binary classification task like the
one in this study (young/old), the aim is to find an optimal
separating hyperplane (OSH) between the two data sets. Fig. 2
illustrates a two-class problem with a hyperplane separating
the two groups. SVM finds the OSH by maximizing the margin
between the classes. The main concepts of SVM are to first
transform input data into a higher dimensional space by means
of a kernel function and then construct an OSH between the two
classes in the transformed space. Those data vectors nearest

to the constructed line in the transformed space are called
the support vectors (Fig. 2) that contain valuable information
regarding the OSH. SVM is an approximate implementation of
the method of “structural risk minimization” aiming to attain
low probability of generalization error [18]. Briefly, the theory
of SVM is as follows [10], [17].

B. Basic SVM Theory

The problem of pattern recognition may be stated as follows:
Given a training data set , with input features and clas-
sification output, of the form

(1)

In our case, is for young gait and for elderly gait. We
assume is some unknown function to classify the feature
vector

(2)

In SVM method, optimal margin classification for linearly sep-
arable patterns is achieved by finding a hyperplane in m di-
mensional space. The hyperplane must linearly separate the two
classes on either side of the hyperplane. The equation
of the decision surface (the hyperplane) is

(3)

where is the adjustable weight vector and b is the hyperplane
bias. The linearly separable case can be represented mathemat-
ically as

(4)

Let is the optimal adjustable weight vector and is the op-
timal bias, where the optimal values are defined when the closest
feature vectors are maximized (see Fig. 2). The optimization
problem can be mapped to quadratic optimization problem with
global minimum and linear constraints. The details of finding
the values of and can be found in [17], [19].

In most real life problems (including our problem) the data
are not linearly separable. One method is to apply nonlinear
transforms to the original data, for example, creating a higher
dimensional vector by multiplying all the terms in the feature
vector with each other. While this may be manageable for small
values of m, it quickly gets out of hand for larger values of m.
This leads to the kernel trick that involves implicitly mapping
our data from input space into a (usually much higher dimen-
sional) feature space via a nonlinear kernel function, hiding the
potentially high dimensionality of that feature space and, thus
avoiding the curse of dimensionality [18]. The kernel function

is related to the nonlinear feature mapping function
by

(5)

The fitness of a hyperplane in feature space is usually measured
by the distance between the hyperplane and those training points
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lying closest to it (the support vectors). A consequence of this
is that we can completely specify our decision surface in terms
of these support vectors.

What initially hindered the widespread uptake of this early
work was the inability to deal with nonseparable data in a sat-
isfactory fashion. Two years after [20], Cortes and Vapnik put
out a paper [19] that showed how a soft margin approach based
on slack variables could be used to tackle this problem in
a simple yet effective manner. The primal form of the problem
given in this paper may be written

(6)

is known as the regularization parameter. To avoid the curse of
dimensionality, we do not attempt to solve the primal. Instead,
we consider the Wolfe dual, namely

(7)

where the variable is used to tune the tradeoff between mini-
mizing empirical risk (ie. training errors) and the complexity of
the machine. It turns out [21] that there is a strong link between
SVM methods and the theory of structural risk minimization. In
[21], Schölkopf et al. introduce the concept of the Vapnik-Cher-
vonenkis (VC) dimension of a SVM, and prove that the cost
function is a tradeoff between empirical risk minimiza-
tion and minimization of the VC dimension. Based on this, we
can state the pivotal risk bound result for SVMs. For a given
SVM, there is a probability of that the following bound
will hold:

(8)

Further properties (including a number of tighter and more spe-
cialized theoretical performance bounds) can be found in [20],
and [22].

Also in [21], Schölkopf et al. mention the surprising experi-
mental fact that any SVM, regardless of what kernel function is
used, will tend to extract much the same set of support vectors.
This result is important because it implies that we can radically
vary the form of the kernel function using much the same in-
cremental method as was used for variation. An overview of
SVM pattern recognition techniques may be found in [23].

III. EXPERIMENTS

To explore the SVM model and its application for binary gait
classification task, we consider gait datasets involving young
and elderly subjects. Particularly, MFC distribution features
recorded during continuous walking were used to develop the
SVM models as well as for testing classification performance
of the models. In the following, we give a brief description
of MFC data collection and feature extraction techniques,
followed by performance evaluation measures for the models.

A. MFC Gait Data

MFC data of 58 healthy adults (30 young and 28 elderly) were
taken from the gait database of the Biomechanics Unit of Vic-
toria University. The young adults were from the academic com-
munity of Victoria University and the elderly participants were
volunteers from various local senior citizen clubs. All subjects
undertook informed-consent procedures as approved by the Vic-
toria University Human Research Ethics Committee. The sub-
jects had no known injuries or abnormalities that would affect
their gait. Means and standard deviations (in brackets) of subject
characteristics were as follows; Age (yr)—young 28.4(6.4), el-
derly 69.2(5.1); Height (cm)—young 171 (12), elderly 165(8);
Body Mass (kg)—young 71.2 (15.0), elderly 66.9(8.3).

Foot clearance (FC) data were collected during steady state
self-selected walking on a treadmill using the PEAK MOTUS
2D (Peak Technologies Inc, Centennial, CO) motion analysis
system. A 50 Hz Panasonic F15 video camera, with a shutter
speed of s, was positioned 9 m from the treadmill, per-
pendicular to the plane of foot motion to record unobstructed
treadmill walking. Two reflective markers were attached to each
subject’s left shoe at the fifth metatarsal head (MH) and the
great toe (TM). Each subject completed about 20 minutes of
normal walking at a self-selected comfortable walking speed.
The MH and TM markers were automatically digitized for the
entire walking task and raw data was digitally filtered using
optimal cutoff frequency, which used a Butterworth filter with
cutoff frequencies ranging from 4 to 8 Hz. The two-dimen-
sional (2-D) motion measurement space was calibrated using a
1 m scaling rod with calibration markers attached to both ends.
These markers were digitizedand their coordinates were used
by the PEAK system to calculate a scaling factor, which was
subsequently used for conversion of marker pixel coordinates to
real distance units. The marker positions and shoe dimensions
were used to predict the position of the shoe/foot end-point i.e.,
the position on the shoe travelling closest to the ground at the
time when minimum foot clearance (MFC) occurs using a 2-D
geometric model of the foot [15]. MFC was calculated by sub-
tracting ground reference from the minimum vertical coordinate
in the swing phase (see Fig. 1).



BEGG et al.: SUPPORT VECTOR MACHINES FOR AUTOMATED GAIT CLASSIFICATION 831

Fig. 3. (a) MFC histogram showing the main features extracted: Q —25th percentile, Q —median or 50th percentile, Q —75th percentile, Min—Minimum
MFC, Max—Maximum MFC. Feature numbers and their descriptions are shown in the table. (b) MFC Poincaré plot showing the key features (in table) extracted
from the plot along the major (Mean, MFC = (MFC +MFC )=2) and minor (Difference, �MFC = (MFC �MFC )) axes.

B. Gait Feature Extraction Using MFC Histograms

Each subject’s MFC data was plotted as histograms showing
individual MFC data and their respective frequencies. Features
describing major statistical characteristics of these distributions
were extracted as illustrated in Fig. 3(a) and also shown in the
insert.

C. Feature Extraction Using MFC Poincaré Plots

While MFC histogram plots show valuable statistical char-
acteristics of the distribution, MFC plots of successive gait cy-
cles, i.e., between and illustrate unique inter-
action effects in 2-D. Such plots, known as Poincaré Plots, have
been shown to be highly effective in studying repetitive events,
e.g., in heart rate variability research indicating relationships
of R-R intervals to identify sound and abnormal heart function
[24], [25]. Likewise, in analysing continuous gait function, these
plots show unique relationship of MFC events between succes-
sive gait cycles and performance of the locomotor system in
controlling the foot clearance at this critical event. For example,
a low correlation in MFC Poincaré plots data would demonstrate
less control since one stride is not affected by the previous stride
[26]. Features characterizing these plots were used to develop
young/old gait classification models. In the following, we show
mathematical basis of the features extracted from these plots.

Fig. 3(b) shows a typical MFC Poincaré plot. Variability
of data along two perpendicular axes, represented by mean

anddifference
are measures of short- and long-term

variability in MFC data [25].
Fromourimperialresultsitwasfoundthat and

are not statistically independent. Also a large number of MFC
data points are measured so for practical purposes

and . This leads
to the following correlation matrix

(9)

where v is the variance of and c is the covariance of
and . Given the data

we require a transform so the resultant data is statistically
independent

(10)

There are many transforms which produce two statistically
independent measures, but we will look at the mean
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and difference of , there-
fore, .
This leads to a transform

(11)

The covariance of can be shown to be statistically independent
(i.e., diagonal covariance matrix)

(12)

D. Cross-Validation

Cross-validation is a standard test commonly used to test the
ability of the classification system using various combinations
of the testing and training data sets [8], [27]. In this method, per-
formance of gait-class prediction is measured by systematically
excluding some gait data during the training process and testing
the trained model using the excluded gait trials. This process is
repeated until every gait trial of the dataset is included in the
testing data set. As the number of MFC data available was lim-
ited in this experiment (currently it takes about 60 h of digiti-
zation time with Peak Motus system to analyze one subject’s
data), a 3-fold cross-validation test was applied in which 58
subjects’ data were divided into three segments with the testing
data set (20) selected as: Segment 1 (1–20), Segment 2 (21–40),
Segment 3 (38–58). Each of the three cross-validation test seg-
ments, therefore, had 10 young and 10 elderly subjects’ MFC
data whereas their respective training segment included the re-
maining 20 young and 18 elderly subjects’ data.

E. SVM Classifier

All the gait features were normalized using
their z-scores to have zero mean and unity variance prior to
using them for training and testing the SVM. Software routines
were developed in Matlab 6.0 (The MathWorks, Natick, MA)
using SVM-Light1 for analyzing the gait data and to perform
various tests, including tests to examine effects of kernel func-
tion, number of gait features and regularization parameter (C)
on classification performance. The generalization performance
of the trained SVM was determined by taking an average of the
prediction accuracies and ROC areas (see Section III-G) of the

1http://ais.gmd.de/~thorsten/svm_light/

three segments. In this experiment, three types of kernel func-
tions [17], [18], [28] were tested.

1) Linear
2) Polynomial (Poly) of degree “d”:

3) Radial Basis Function (RBF) with width “g”:
(Appendix A)

F. Neural Networks

Gait classification between young and older adults was also
carried out using neural networks (NNs) in Matlab. In this ex-
periment, we used a three-layer NN with weights adjusted using
thye Scaled Conjugate Gradient Algorithm [29] to train rela-
tionship between gait features and the respective gait class. The
NN model had an input layer consisting of 24 neurons corre-
sponding to the input gait features, one hidden layer and an
output layer with two neurons representing gait types

. After training a NN model, its gener-
alization ability was evaluated using the three cross-validation
test samples.

G. Performance Testing Using ROC Plots

In addition to %classification accuracy, performance of the
SVM classifier was tested using ROC (receiver operating char-
acteristic) plots [14], [30]. The ROC curve displays plots of true
positive rates or sensitivity (i.e., positively labeled test data clas-
sified as positive) versus false positive rates (i.e., negatively la-
beled test data classified as positive) as the threshold level of
classification is varied from 0 to . False positive rates also
indicate specificity .
The area under the ROC curve provides a measure of overall
performance of the classifier i.e., larger the ROC area the better
is the classification accuracy over a range of thresholds. Many
studies (cf. [14]) have used ROC plot and its area as an index for
evaluating classifier performance. ROC curves were plotted for
all SVM-kernels for different thresholds. Area under the ROC
curve was computed numerically using custom made software
routines written in Matlab.

H. Hill-Climbing Feature Selection

Generalization performance of a classifier depends primarily,
among other factors, on the successes of selection of good fea-
tures i.e., features that represent maximal separation between
the classes [31]. A hill-climbing feature selection algorithm was
used to identify features that provided the most contribution in
separating the two classes across the three segments. This algo-
rithm iteratively searches for features that positively improves
separation results or results in least reduction in
classification results. The search procedure may be described
as follows.

Let be the ROC area using a set of features, and let us
start with two features sets: 1) Fixed features set, (initially
empty); 2) Remaining features set, (initially all the features).
Then, the fixed features set is incremented such that

where feature is chosen to maximize . This tech-
nique is repeated until all the features have been added to the
fixed features set in descending order of their importance.



BEGG et al.: SUPPORT VECTOR MACHINES FOR AUTOMATED GAIT CLASSIFICATION 833

Fig. 4. Example (a) MFC histogram plots of one young and one elderly subject, and their respective (b) Poincaré plots.

TABLE I
ACCURACY OF PREDICTION (%) OF CROSS-VALIDATION TESTS USING LINEAR, POLYNOMIAL (d = 3) AND RADIAL BASIS FUNCTION (RBF) KERNELS AND

NEURAL NETWORK USING ALL 24 FEATURES

IV. RESULTS

Fig. 4(a) is an example of MFC distribution of a young and
an elderly subject, whereas Fig. 4(b) shows their corresponding
Poincaré Plots. These plots reveal some obvious qualitative
differences between these two subjects, such as increased
variability, lower MFC central tendency, and higher skewness
(skewed to the right) in the elderly plots. Features extracted
from these plots were used to train both linear and nonlinear
SVMs as well as the NN, and later on test their capability to
discriminate the two age groups.

Table I shows mean success rates of the SVM classifier for
the three cross-validation tests, which included all of the 58 sub-
jects’ gait data in the test sample. The average success rate was

% with a maximum accuracy of 85% in discriminating the
gait patterns obtained with Linear and RBF kernels, and while
trained with all 24 features. Tests with Polynomial (Poly) kernel
provided lower accuracy, whereas when compared with the NNs
results these results proved to be superior.

Fig. 5(a), (b) displays ROC plots of Linear, Poly
, and RBF kernels when all the 24 fea-

tures were used as inputs to the SVM classifier and also
when only selected features were used to train the classi-
fiers. With all 24 features, both Linear and RBF kernels
showed better performance compared to the Poly kernel

.
However, when the classifiers were trained with se-
lected features, their classification performance improved

. This is
also reflected in the shape of the ROC plots, i.e., higher sensitiv-
ities in RBF at higher specificities compared to the Poly kernel.
Fig. 6 presents ROC areas plotted as a function of features
selected by the (hill-climbing) feature selection algorithm. RBF
displayed overall better performance
relative to Linear and Poly kernels. It is important to note from
these graphs that all three kernels attained their maximum
performance with only a handful of features (3–5). The impor-
tant features selected by the algorithm to achieve maximum
ROC area include (see Figs. 3 and 6): Linear kernel—feature
#13 (MFC coefficient of variation, CV), #20 and
#4 (Q1); Poly kernel—feature #13 (CV), #16
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Fig. 5. ROC (receiver operating characteristics) curves showing True positive (sensitivity) and False positive rates (1—specificity) for various thresholds using
Linear, Polynomial (d = 3), and RBF (g = 1) kernels: (a) using all 24 features, (b) using selected features (3 for linear and polynomial, and 5 for RBF kernels)
by the feature selection algorithm, C = 1. See text and Fig. 6 for details on feature selection.

Fig. 6. Graph displaying the relationship between ROC area and the number
of features selected by the “hill-climbing” algorithm for linear, polynomial
(degree = 3) and RBF (g = 1) classifiers.

and #1 ; RBF kernel—feature #13 (CV), #20
, #18 , #5 (Q2), #1 . Once

maximum was achieved it was found to be fairly
unaffected by further increment of gait features—eventually
the graph showed a downward trend indicating that too many
features negatively affected the classification performance.
Table II displays performance of the SVM classi-
fiers as a function of number of gait features and also for three C
values (.1, 1, 10). Overall, it emphasizes that all classifiers were
able to discriminate well when trained with a fewer number of
good features. Within the three classifiers, RBF kernel showed
maximum performance with and

.
Fig. 7(a)–(c) shows scatter plots of the test data (Segment 3

results) with the separating hyperplane (decision surface) super-
imposed on the test data for the case of 1) Linear, 2) Poly, and
3) RBF kernels. These plots offer a visual representation of the
two groups’ data as a function of first two features selected by
the “hill-climbing” algorithm (feature #13 and 16). Examples
of misclassification cases can be seen in all three kernels with
individual test data being located on the wrong side of the sepa-
rating hyperplane. Fig. 7(d) illustrates how a change in threshold

TABLE II
ROC AREA OF LINEAR, POLYNOMIAL (POLY) AND RADIAL BASIS FUNCTION

(RBF) KERNELS FOR DIFFERENT REGULARIZATION PARAMETER (C)
AND NUMBER OF FEATURES, d = DEGREE OF POLYNOMIAL,

g = WIDTH OF RBF NETWORK

level can affect the decision surface in a Poly kernel and, conse-
quently its influence on classification accuracy. From Table II,
it is also evident that the regularization parameter (C) can affect
performance of the classifier. In Fig. 8, we plot of the
linear kernel as a function of C using three subsets (3, 12, 24) of
features selected by the “hill-climbing” algorithm. It is obvious
from this plot that for the classifier, there is a range of C values
that would yield optimum performance (e.g., with 12 features
C would range between 0.8 to 8.6). Also, in this case the first
3-ranked features were found to provide the best classification
results compared to those due to 12 and 24 features.

From Figs. 6 and 8 we can see that there are both good and
bad features in our data in terms of their contribution toward
separating the two age groups. In Table III, we list the first 10
highly ranked features and their corresponding ROC areas in
descending order. Histogram plot in Fig. 9(a) shows frequency
of various combinations of 3 features and their corresponding
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Fig. 7. Two-dimensional scatter-plots showing test data and decision boundaries using two features (feature #13 (CV) and 16 (STD �MFC ) and 16) for the
case of: (a) Linear, (b) Polynomial, and (c) RBF kernels (Segment 3 test results). (d) Diagram illustrating the effect of threshold change on decision boundaries and
hence, classification performance for the case of a Polynomial classifier.

Fig. 8. ROC-area plots as a function of regularization parameter (C) for 3
different subsets of features (3, 12, and 24) using Linear kernel.

ROC areas, and confirms that there are features whose combi-
nations would provide classification results of only by chance

whereas other combinations can achieve a
high . Fig. 9(b) illustrates alternative histogram
plot using % classification accuracies, and reinforces the pre-
vious finding that some combinations of 3 features can yield a
maximum accuracy of 90%. Features extracted from the MFC
histogram plots were found to appear in about 60% of these

highest accuracy counts, whereas Poincaré plot features were
found to be among the rest of the 40% counts. Statistical tests
(T-tests) on the features of the MFC histogram plots revealed
that nine out of the 13 features were significantly different be-
tween the two age groups. It is interesting to note that the best
feature chosen by the SVM feature selection algorithm (fea-
ture #13, CV) was also found to be significantly different

between the two age groups. Overall, features describing
the central tendency of the distribution (i.e., mean, median) were
found to be the main contributors % of the maximum ac-
curacy, whereas dispersion characteristics such as SD and Inter-
Quartile-Range were responsible for nearly 30% of the con-
tributions. Among other features, (11%) and higher
moment about short axis of Poincaré plots
showed good contribution (12%) to the classification task.

V. DISCUSSION

In this paper, we propose a support vector machine based
approach to classify young/old gait patterns. The results of this
research suggest that histogram and Poincaré plots of MFC data
provide useful information regarding the steady-state walking
characteristics of individuals such that these features could be
used to train a machine-learning tool to automatically recognize
young/old gait. Early detection of locomotor impairments using
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TABLE III
TOP 10 RANKED FEATURES SELECTED BY THE ALGORITHM ACROSS THREE DATA SETS AND THEIR CORRESPONDING AVERAGE ROC

Fig. 9. Histogram plots showing the frequency of gait features (groups of
three) and their classification outcomes: (a) ROC area, (b) % accuracy.

such supervised pattern recognition techniques would provide
the opportunity to identify at-risk gait and initiate corrective
measures to be undertaken, e.g., identify potential elderly
fallers for falls prevention programs. Previous research on
automated gait classification has used NNs and fuzzy clustering
techniques for applications in diagnosis of pathological gait
[9], [32]. Because of superior gait classification performance
as demonstrated in this research and also classification in other
biomedical applications [27], support vector machine appears
to be a better alternative for automated gait diagnosis and also
for such applications as monitoring the progress of treatment
or intervention outcomes of gait in clinical and rehabilitation
situations. SVMs are often time consuming to retrain, but using
our technique of incremental learning [33] the retraining time
can be reduced by orders of magnitude.

In this study, MFC data from steady-state gait have been used
to characterize gait patterns and as inputs to the SVM. There are
two major reasons for this. Firstly, MFC provides a more sen-
sitive measure of the motor function of the locomotor system
compared to some gross overall kinematic descriptions of gait
such as joint angular changes, and secondly, its close linkage
with tripping risks [7], [15]. Tripping has been identified as a
major cause of falls in older population. Also, MFC data col-
lected over a longer duration are vital for the creation of his-
togram and Poincaré plots with sufficient data points so that
their characteristics represent real gait performance. Insufficient

number of gait cycles due to data collected over short duration
has the potential to result in distributions not reflective of in-
dividual’s gait performance. In fact to obtain a more stabilized
gait pattern and to derive reliable statistics (e.g., mean, median,
mode, skewness, kurtosis etc.), MFC data recorded min-
utes has been proposed [15]. All subjects in this study were fit
and healthy and they completed the walking trial comfortably.

When classification task of the SVM was compared across
the three commonly used kernels: Linear, Radial Basis Func-
tion (RBF) and Polynomial, both the Linear and RBF kernels
were found to perform well. The results of both SVM and NN
classification tools suggest that the SVM-Linear and SVM-RBF
performed superiorly when applied to separate young/old gait
patterns. In a gender classification task using video sequence
images, Lee & Grimson [12] also reported superior SVM per-
formance with Linear kernel compared to a Polynomial kernel.
Better classification performance by SVM over NN has been re-
ported in another study involving protein fold recognition [27].
SVM eliminates many of the problems experienced with NN
such as local minima and overfitting [17]. In addition, its ability
to produce stable and reproducible results makes it a good can-
didate for solving many classification problems as evidenced by
the recent surge in the use of this technique in many areas.

Generalization performance of a classifier depends primarily,
among other factors, on the successes of selection of good fea-
tures i.e., features that represent maximal separation between
the classes. A “hill-climbing” feature selection algorithm was
employed here which iteratively searches for features that posi-
tively improves or reduces the least in identification results. The
test results clearly show that with our gait data, only a handful of
properly selected features (3–5) are necessary for effective clas-
sification. It is interesting to note that all three kernels picked
feature #13 as the best
feature in separating the two classes when
“hill-climbing” algorithm was applied. This is not surprising as
this is the only feature in our data set that contains informa-
tion regarding the two most significant aspects of MFC distri-
bution: variability and central tendency. The results displayed
in Figs. 6 and 8 and Table II also reiterate that having many
features would not be always helpful. In fact, when the max-
imum accuracy is obtained adding further features that are not
good representative of the separation of two classes could have
detrimental effect on the classification performance. Similar de-
pendence of classification performance on features has been re-
ported in other investigations. For example, in a movement clas-
sification task using features extracted from electroencephalo-
graphic signals, Yom-Tov and Inbar [34] demonstrated that only
a small number of features (10–20) out of 1000 features were
necessary to achieve maximum performance and the classifica-
tion rate decreased for features . Similar conclusion has also
been drawn using features taken from visual-field location mea-
surements in Glaucoma diagnosis application using various ma-
chine classifiers [14].
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Fig. 10. One-dimensional Gaussian RBF with center x and width g.

Classification performance of the SVM also depends on the
selection the regularization parameter, i.e., C as demonstrated in
Fig. 8 and also in Table II. As we have already mentioned (Sec-
tion II-B, (7)), C is the penalty parameter for misclassification
and has to be carefully selected to achieve maximum classifi-
cation accuracy. Fig. 8 also emphasizes that optimal value of
C could be different for different number of features and has
to be selected by trial and error method. One way of tackling
this would be to plot a graph showing the reliance of classi-
fier performance on C parameters and then picking the optimal
C from the graph, similar to the one shown in Fig. 8. When
compared across different C’s and number of features, RBF
was found to perform the best in recognizing MFC gait-patterns

, suggesting that RBF is able to better exploit
the features compared to Linear and Polynomial classifiers.

Both histogram and Poincaré plot features were effective
in discriminating the two age groups. This suggests that gait
changes with age are reflected in these plots and features ex-
tracted from these plots were instrumental in differentiating the
two groups. Apart from MFC histogram features that provide
statistical descriptors of MFC distributions, Poincaré plots have
been extensively used in heart rate variability research for iden-
tifying normal/abnormal heart conditions from these plots [24],
[25]. In our earlier work, Poincaré plots were used successfully
in heart variability analysis [25] and for the first time, we have ex-
tended the analysis to gait, which has shown good promise in this
area. It appears that such plots might also be useful in detecting
movement abnormalities and also for monitoring improvements
in walking performances as a result of treatment or intervention
in a clinical/rehabilitation setting. Among the various features
extracted from the two types of plots, features that are represen-
tative of MFC central tendency and variability measures were the
main contributors of separation between the age groups.

The research presented in this paper can be extended in sev-
eral ways. In addition to kinematic gait features other gait char-
acteristics such as force platform and electromyography results
could be tried to investigate whether there are further improve-
ments in its classification power. Furthermore, gait features as-
sociated with individuals with a history of falls could be used to
train SVMs for automated identification of at-risk fallers.

VI. CONCLUSION

In this paper, we propose an automated gait classifier based on
an emerging machine learning tool, support vector machine. It

shows clearly that useful gait features can be extracted using two
types of MFC distributions—Histogram and Poincaré plots that
can effectively separate young and ageing gait. Using results of
this research we have demonstrated that SVMs are able to auto-
matically recognize gait patterns of young and old, and appear
to have plenty of potentials for future applications in identifying
normal and pathological gait patterns.

APPENDIX A
Radial Basis Function (RBF)

The RBF [17], [18], [28] is a quickly and monotonically de-
creasing function as the data point x moves away from the center

(see Fig. 10). The rate at which the Gaussian RBF decreases
is governed by the width . The larger the value of g the slower
is the rate of decline. Fig. 10 illustrates one-dimensional (1-D)
RBF as a function of x. The 2-D RBF has similar cross section
through its center, . Further details of RBF may be found in
[17], [18], and [28].
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