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Abstract
In this paper we present a hydrologic application of a new statistical learning methodology called support

vector machines (SVMs). SVMs are based on minimization of a bound on the generalized error (risk) model,
rather than just the mean square error over a training set. Due to Mercer’s conditions on the kernels, the corre-
sponding optimization problems are convex and hence have no local minima. In this paper, SVMs are illustra-
tively used to reproduce the behavior of Monte Carlo–based flow and transport models that are in turn used in the
design of a ground water contamination detection monitoring system. The traditional approach, which is based on
solving transient transport equations for each new configuration of a conductivity field, is too time consuming in
practical applications. Thus, there is a need to capture the behavior of the transport phenomenon in random media
in a relatively simple manner. The objective of the exercise is to maximize the probability of detecting contami-
nants that exceed some regulatory standard before they reach a compliance boundary, while minimizing cost (i.e.,
number of monitoring wells). Application of the method at a generic site showed a rather promising performance,
which leads us to believe that SVMs could be successfully employed in other areas of hydrology. The SVM was
trained using 510 monitoring configuration samples generated from 200 Monte Carlo flow and transport realiza-
tions. The best configurations of well networks selected by the SVM were identical with the ones obtained from
the physical model, but the reliabilities provided by the respective networks differ slightly.

Background
The design of ground water pollution monitoring net-

works entails the selection of sampling points (spatial)
and sampling frequency (temporal) to determine physical,
chemical, and biological characteristics of ground water
(Loaiciga et al. 1992). The current approach to ground
water quality monitoring network design requires that
consideration be given to (1) the spatial and temporal
coverage of the monitoring sites; (2) the competing ob-
jectives of a monitoring program; (3) the complex nature
of geologic, hydrologic, and other environmental factors;
(4) the stochastic character of transport parameters

(geologic, hydrologic, and environmental) used in the
design process; and (5) the risk posed to society (failure
to detect, poor characterization, etc.). Based on design ob-
jectives one can identify three categories of monitoring
networks: (1) leak detections; (2) characterization; and
(3) long-term monitoring. In the following sections we
focus our attention on leak-detection monitoring net-
works. Interested readers may refer to the works of Hudak
and Loaiciga (1992), Datta and Dhiman (1996), Molina
et al. (1996), Mahar and Datta (1997), Montas et al.
(2000), and Reed et al. (2000) for design of characteriza-
tion and long-term monitoring networks.

Leak-Detection Monitoring Networks
Networks in this category enable one to detect unex-

pected leaks before the contaminants reach a compliance
boundary, which is usually located at some relatively
short distance, say 100 m, from a landfill. Solutions to
this problem are complicated due to the facts that the
location and magnitude of leaks are random and con-
taminants travel within systems characterized by poorly
defined boundaries and hydrologic conditions. Massmann
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and Freeze (1987a, 1987b) presented a comprehensive
framework and application for the design of landfill oper-
ation. The objective was to maximize the net present
value of stream of costs, benefits, and risks. Risk is asso-
ciated with the cost of failure, with failure being defined
as the situation in which the concentration measured is in
excess of a standard at the compliance surface. The deci-
sion analysis will then compare different alternative
monitoring networks by calculating the reduction of the
probability of failure. Meyer and Brill (1988) analyzed
the same problem through an integer-programming
model of facility location (Church and ReVelle 1974).
Their objective was to maximize the detection of plumes
that exceed a concentration standard. Random plumes
were generated from parameters sampled from longitudi-
nal and transverse dispersivity distributions, which were
assumed to be positively correlated with a normal distri-
bution and uniform velocity vector directions. For
a given number of monitoring wells (representing cost
constraint), the integer programming would select loca-
tions that resulted in a higher probability of plume detec-
tion. Meyer et al. (1994) extended the work of Meyer and
Brill (1988) to include an additional objective of mini-
mizing the area of contamination at the time of detection.
Storck et al. (1997) extended the work of Meyer et al.
(1994) to three-dimensional flow and transport problems
and ignored dispersion transport. Instead, they used an
advective particle-tracking approach.

Angulo and Tang (1999) used similar objective crite-
ria and uncertainty analysis as in Meyer et al. (1994) but
formed the objective function through ‘‘utility criteria’’
for a system that consists of a single row of wells perpen-
dicular to the flow direction. For a given number of wells
at a given distance from the landfill, the total cost of the
system was found to be the sum of system construction
and monitoring costs, plus the cost of aquifer remediation
associated with expected volumes of contaminated aqui-
fer given detection and no detection. Morisawa and Inoue
(1991) presented a methodology for designing an optimal
monitoring network based on fuzzy utility functions. A
stochastic simulation of both critical and precursor indi-
cator chemicals resulted in a mathematical description of
a four-attribute design problem. An optimum monitoring
network was then defined as a network having maximum
total utility, which was evaluated as the fuzzy expectation
of weighted arithmetic sums of the four utilities. All the
aforementioned studies assumed that there is continuous
monitoring at potential monitoring well locations. Moni-
toring frequency was examined by Jardine et al. (1996)
within a decision analysis framework for designing moni-
toring networks for fractured rock.

Methodology
In this paper we present a methodology for the appli-

cation of support vector machines (SVMs) in the design
of ground water contamination detection monitoring net-
works. The objective of the modeling exercise is to design
an optimal monitoring network for an initial detection of
ground water contamination that maximizes the probabil-
ity of detection while minimizing cost (i.e., number of

monitoring wells). A given topology of monitoring net-
work (number and locations) has a corresponding proba-
bility of plume detection (reliability). If the number and/
or location of a well changes, the monitoring network will
have a different reliability. With an increased number of
wells, one can increase the reliability of a monitoring net-
work, but this in turn would result in higher cost. While
the cost of monitoring wells in a network can be easily
quantified in monetary values, it is not simple to quantify
the change in reliability (probability of detection) in mon-
etary terms. Therefore, we set our objective herein getting
trade-off curves between monitoring network sizes and
corresponding reliabilities. SVMs will be trained to pro-
vide network reliabilities for an arbitrary configuration of
monitoring wells so that one would be able to select those
providing the highest reliabilities without running time-
consuming flow and transport models.

Model Domain and Uncertainty
The aquifer is assumed to be represented by a rectan-

gular box in which a two-dimensional flow takes place.
The overall dimensions of the model were 1000 by 500 m
(Figure 1). Model cell sizes were 20 by 20 m. The bound-
ary conditions for the steady-state flow model were zero
flux at y = 0 m and y = 500 m and constant head along the
other two boundaries. These boundary conditions imply
that the regional ground water flow direction is relatively
well known. The head values at x = 0 m and x = 1000 m
were chosen to result in an average gradient over the
domain of 0.01. We considered only two types of un-
certainties: source location and the spatial distribution of
the hydraulic conductivity. The method can readily be
extended to incorporate additional uncertain parameters
(e.g., boundary condition, recharge). The leak is assumed
to be equally probable at any location in the landfill cell
(equivalent to a numerical cell). The source of hydro-
geological uncertainty is limited to spatial variability in the
hydraulic conductivity field. The natural logarithm of the
hydraulic conductivity, Y = ln(K), was modeled as a Gauss-
ian second-order stationary stochastic process with a mean
value of lY = 0.79. The variance of Y was set at r2Y = 0.96,
with correlation scale of l = 100 m and exponential covari-
ance function. Meyer et al. (1994) also used a similar case
study. The method presented by Tompson et al. (1989),
based on the turning bands algorithm, was used to generate
a stationary, correlated two-dimensional hydraulic conduc-
tivity field. Note that this simple representation of the
aquifer is not a limitation of the application of SVMs, but
rather a simplification of numerical modeling to save com-
putational time. The procedure developed here can easily
be extended to more complicated site conditions.

Flow and Transport Simulations
The USGS finite-difference MODFLOW code

(McDonald and Harbaugh 1988; Harbaugh and McDonald
1996) was used to simulate the steady-state ground water
flow problem. MODFLOW was chosen because it has
been widely used, and its use has been extensively docu-
mented in the technical literature. Transport was simulated
using a particle-tracking approach. MODPATH (Pollock
1988, 1989), which is designed to use the head calculated
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from MODFLOW, was used in this study. MODPATH
tracking code ignores dispersion in transport. Some pre-
vious work on monitoring network design also ignored
dispersion (e.g., Massmann and Freeze 1987b; James and
Gorelick 1994; Jardine et al. 1996; Storck et al. 1997).
Massmann and Freeze (1987b) assumed that the advective
component dominated contaminant migration and the
effect of dispersion on detection probability would be sim-
ilar to that of increasing the contaminant source area.
Storck et al. (1997) assumed that, because dispersion acts
to increase the volume that is contaminated by a plume,
ignoring the effect of dispersion results in smaller plumes
that are more difficult to detect; this is a conservative
assumption that agrees with a pessimistic (worst case)
design philosophy. They reported that a network designed
by the dispersion-less method detected even more plumes
if its performance was evaluated with respect to a set of
plumes generated with dispersion. Hence, we will also
neglect dispersion transport in the present approach to
simplify computation. Note that the method presented
here can easily be extended to include dispersion and
other forms of transport. MODFLOW and MODPATH
were run in a consecutive manner with a command inter-
face made of C/C++ processing programs and UNIX shell
commands before the results were passed to the SVMs.

Background on SVM
The support vector methodology (Vapnik 1995, 1998)

estimates a functional dependency, f(x), between monitor-
ing well locations {x1, x2, ., xL} taken from x2RK and
their corresponding reliabilities {y1, y2, ., yL} with y2R
drawn from a set of L independent and identically distrib-
uted monitoring networks/reliabilities observations by
minimizing the following regularized functional:
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Æw; xæ denotes the inner product or dot product between w
and x, b is bias, and K is an input dimension (in this case
the maximum number of potential monitoring well loca-
tions). The estimated function, f(x), would then calculate
the probability of contaminant detection for an arbitrary
monitoring configuration x. The first term in the objective
function is a stabilizer that is a prior on the regression
function. It minimizes the complexity of the function f
(i.e., the estimated function will always tend to be flat,
avoiding overfitting). The second term (together with the
constraints) represents the e-insensitive loss function de-
picted in Figure 2. As shown in the figure, the parameters
ni, ni* are slack variables that determine the degree to
which samples with error more than e be penalized. In
other words, any error smaller than e does not require ni,
ni* and hence does not enter the objective function because
these data points have a value of zero for the loss function.
The constant C > 0 determines the trade-off between the
complexity of function f and the amount up to which devia-
tions larger than e are tolerated. Usually, Equation 1 is
solved in its dual form using Lagrange multipliers. Writing
Equation 1 in its dual form and differentiating with respect
to primal variables (w, b, ni, ni*) and rearranging gives:
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Figure 1. Generic site conceptualization.
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where k(x,xi) is a kernel function that replaces the dot
products of input examples, and ai* and ai are Lagrange
multipliers. From the Kuhn-Tucker (KT) condition it fol-
lows that the Lagrange multipliers may be nonzero only
for jf(xi) 2 yij % e. In other words, for all samples inside
the e-tube, the ai, ai* vanish. The samples that have no
vanishing coefficient are called support vectors, hence the
name support vector machines. Intuitively, one can imag-
ine the support vectors as sample points that support the
‘‘decision surface’’ or hyperplane.

In its present form, SVMs for classification problems
were developed at AT&T Bell Laboratory by Vapnik and
coworkers in the early 1990s (e.g., Boser et al. 1992).
SVMs for regression were first introduced in Vapnik
(1995), and earlier applications were reported in the late
1990s (e.g., Vapnik et al. 1997). Despite enjoying success
in other fields (Schölkopf et al. 1999b), there are few ap-
plications of SVM in hydrology. Dibike et al. (2001)
applied SVM successfully in both remotely sensed image
classification and regression (rainfall/runoff modeling)
problems and reported a superior performance over the
traditional artificial neural networks (ANNs). Kaneviski
et al. (2002) used SVM for mapping soil pollution by
Chernobyl radionuclide Sr90 and concluded that the SVM
was able to extract spatially structured information from
the row data. Liong and Sivapragasam (2002) also re-
ported a superior SVM performance compared to artifi-
cial neural net in forecasting flood stage.

SVM Hyperparameters

Two of the SVM hyperparameters are e, which de-
fines the e-insensitive loss function, and the capacity C.
The parameter C sets an upper bound on the support vec-
tor coefficients (as). It controls the trade-off between min-
imizing the loss function (satisfying the constraints) and
minimizing the regularizer (complexity). The lower the
value of C, the more the weight given to the regularizer.
As C approaches infinity, the problem tends to be uncon-
strained and also unstable. Cristianini and Shawe-Taylor
(2000) suggest the use of a range of values of C and some
validation techniques for selecting the optimal value of
this parameter. A rule of thumb suggested by Saunders
et al. (1998) for selecting parameter C is to use a value that
is slightly lower than the largest coefficient, or a value,

obtained from training with C equal to infinity. The idea
behind this approach is justified since choosing a value
higher than the largest coefficient will obviously have no
effect because the box constraint (Equation 2b) will never
be violated.

Using the e-insensitive loss function enables one to
optimize the generalization bound. This relies on defining
a loss function that ignores errors located within a certain
distance of the true value. Selecting an appropriate e is
largely a heuristic exercise. Schölkopf et al. (1999a) pres-
ent a modified SVM algorithm that automatically calcu-
lates e given the fraction of data points outside the e-tube,
a parameter referred to as t. Then again, t is determined
heuristically. Mattera and Haykin (1999) propose to
choose the value of e so that the percentage of support
vectors is about 50% of the number of samples. Smola
et al. (1998) and Kowk (2001) proposed asymptotically
optimal e-values proportional to input noise level.

Selection of Suitable Kernels

The problem of choosing a suitable architecture for
a neural network application is similar to the problem of
choosing suitable kernels for SVM. Conceptually, the
choice of a kernel, among other things, corresponds to
choosing a similarity measure of the data because kernels
are defined as an inner product of a mapping function in
feature space, and inner products measure similarity of
data. Being able to compute inner products means being
able to make geometric constructions in terms of angles
and lengths of input vectors. Since one is interested in
predicting y from known x, one would like to have some
form of measure that relates (x,y) to the training exam-
ples. Informally, this means that similar inputs lead to
similar outputs. In the output space, similarity is measured
by a loss function. In the case of pattern recognition, the
only possible outputs are ‘‘similar’’ and ‘‘different.’’

One can construct kernels from basic simple func-
tions or as a combination of other simple kernels (see
Vapnik 1995, 1998; Schölkopf and Smola 2002 for differ-
ent methods of kernel construction). In this research we
have tested several commonly used kernels for the SVMs,
which are presented in the Appendix. However, we only
report results obtained using Strongly Regularized
Fourier and spline kernels.

Figure 2. e-insensitive loss function G.
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An SVM Algorithm

Figure 3 contains a graphical overview of the differ-
ent steps in regression SVM. The input patterns (in this
case, monitoring well locations for which a prediction of
reliabilities should be made) are mapped into feature
space by a mapping function F. One does not have to
explicitly know the mapping function, but it is sufficient
that the dot products that correspond to evaluating kernel
k functions at monitoring locations k(xi,x) are known.
Finally, the dot products are added up using the weights
bi = (ai – ai*), which are nonzero Lagrange multipliers.
This result is then added to the bias b to yield the final
network reliability predictions.

Implementation of SVMs
The implementation of SVMs for the design of initial

detection monitoring networks may be generalized by the
following eight steps: (1) generating a random leak loca-
tion; (2) generating a random (although correlated)
hydraulic conductivity field; (3) solving a steady-state
ground water flow model to obtain ground water head for
the given hydraulic conductivity field; (4) transport simu-
lation of the resultant contaminant plume until it reaches
model boundaries; (5) keeping track of simulated plumes
exceeding regulatory standards at monitoring wells; (6)
developing a training and testing set (input being network
configurations, while output is the reliability provided by
a given monitoring network); (7) using the trained SVM
to predict the reliability provided by a set of monitoring
wells; and (8) using the flow and transport code to verify
if the SVM-recommended network configuration pro-
vides the required probability of detection.

Illustrative Example

Figure 1 depicts the generic problem considered
here. Ten potential monitoring well locations are consid-
ered (the first column of monitoring wells being located
100 m from the landfill cell). For each random leak loca-
tion and spatially variable hydraulic conductivity field,
the steady-state ground water flow problem is first solved,
followed by the solution of the advective transport prob-
lem using a particle-tracking approach.

Five thousand particles uniformly generated over the
landfill cell were used to represent the random leak. Each
particle was advected until all particles left the model
boundary (compliance boundary). The contaminated
plume was defined by the model cells through which at
least one particle passed. Detection at the monitoring lo-
cations was assumed to occur if the concentration at the
wells reached 10% of the concentration introduced at the
source cell. Given a unit mass of contaminant for each
particle in the source cell, the concentration at the moni-
toring location will be equal to the ratio of the number of
particles that pass through that location to the number of
particles introduced at the source cell, divided by the flow
passing the monitoring well. Storck et al. (1997) also used
a similar detection criterion. Continuous sampling at the
monitoring wells was also assumed. Two hundred Monte
Carlo ground water flow and transport runs were con-
ducted. For each Monte Carlo run, detection was noted at
each potential monitoring well location in order to calcu-
late reliability as follows:

Reliability =
Number of Detected Plumes

Total Number of Generated Plumes
ð2cÞ

The training and testing sets were randomly drawn from
possible combinations of the 10 potential monitoring
wells.

Sample Points =
X10

i = 1

Combinationð10; iÞ ð3Þ

Therefore, the input vector has 10 dimensions corre-
sponding to the 10 potential monitoring locations. The
output will be the reliability (probability of detection) of
the given monitoring configuration. Table 1 shows 10
samples of training patterns. In the table, the value 1 or
0 defines the existence/nonexistence of a potential moni-
toring well at a given monitoring network. For example,
sample number 1 consists of well numbers 5, 6, 8, and 9
(Figure 1). These wells detected 148 of the randomly
generated plumes, and hence their reliability is 0.74. The
reliabilities of 1023 (Equation 3) monitoring networks
were similarly calculated constituting the total training
and testing patterns.

Output  iK(x,xi) + b 

… Feature space 

(X1) (X2) … (Xn) Mapped vectors 

…. Support vectors 

Input vectors

( . )( . )( . )

X3

X1 XnX8

(X3)

Figure 3. Architecture of an SV regression machine.
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Results and Discussions
The SVM software developed by Royal Holloway

University of London and AT&T Speech and Image Pro-
cessing Service Research Lab (Saunders et al. 1998) was
used in this study. There is also a wide array of other
SVM software available online (e.g., http://www.kernel-
machines.org).

Five hundred and ten sample patterns generated from
possible combinations of 10 potential monitoring wells
and corresponding probabilities of detection were used to
train the SVM, and the rest (513) of the generated sam-
ples were used for testing. Two types of performance cri-
teria are used here: the root mean square error (RMSE)
and the absolute mean deviation, as defined below:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðPredictedValue2SimulatedValueÞ2

n

s

AMD =

P jðPredictedValue2SimulatedValuej
n

where n is sample size. One can also use other perfor-
mance measures.

Figure 4 shows plots of performance of the SVM on
training and testing patterns for the best performance over
the testing pattern. It is important to note that the total
training and testing data came from a unique combination

of the 10 potential monitoring well locations. Therefore,
network configurations used in testing have not been seen
before by the SVM (during training). Similar reliabilities
may be obtained with different numbers and positions of
monitoring wells. Therefore, Figure 4 shows the com-
bined performance of the SVM over all sizes of networks
(in this case, 1 to 10). Figure 5 shows the range of pre-
diction error of probability of leak detection for networks
of different sizes during testing. The parameters for Fig-
ure 5 are e = 0.001, C = 90, and a strongly regularized
Fourier kernel of c = 5 as given by Vapnik (1998). The re-
sulting number of support vectors was 456. For a pre-
specified value of e = 0.001, good performance was
obtained for a value of C between 10 and 100, the best
generalization being at C = 90. Figure 6 shows the RMSE
for the two types of kernels chosen.

The support vectors seem to converge to a constant
value as C increases. This is shown in Figure 7. Another
result to note here is the change in the number of support
vectors with change in value of !. With a decrease in e,
the number of support vectors increases (Figure 8). The
fact that e controls the number of support vectors is ex-
pected and can be explained as follows (Vapnik 1998).
Points that lie on or outside the e-tube (Figure 2) define
the support vectors, and it is necessary to note that we ob-
tained our approximation by solving the optimization
problem given by Equation 2 for which the KT conditions
hold. The Lagrange multipliers can be regarded as forces,

Table 1
Training Patterns

No. Input Pattern Output Pattern

1 0 0 0 0 1 1 0 1 1 0 0.74
2 0 0 0 0 1 1 0 1 1 1 0.74
3 0 0 0 0 1 1 1 0 0 0 0.67
4 0 0 0 0 1 1 1 1 0 0 0.67
5 0 0 0 0 1 1 1 1 0 1 0.71
6 0 0 0 0 1 1 1 1 1 0 0.74
7 0 0 0 1 0 0 0 0 1 0 0.64
8 0 0 0 1 0 0 0 0 1 1 0.67
9 0 0 0 1 0 0 0 1 0 0 0.72
10 0 0 0 1 0 0 1 0 0 0 0.77
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Figure 4. SVM performance in training and testing data.

Figure 5. Range of absolute deviations for network of
a given size. The dots represent mean absolute deviations.

418 T. Asefa et al. GROUND WATER 43, no. 3: 413–422



and the approximation corresponds to a flexible rod one
would like to fit into the e-tube. The kernel function k de-
fines the law of elasticity. By narrowing the width of the
tube the number of points that would lie on or outside the
e-tube increases. Conversely, by setting the number of
support vector, one can calculate the corresponding e
(Schölkopf et al. 1999a).

Comparison with ANNs
ANNs are by far the most popular data-driven mod-

els that have been used extensively in the past couple of
decades in approximating physically based hydrological
models. Interested readers are pointed to the review on
applications of ANNs in modeling hydrological processes
by the American Society of Civil Engineers (ASCE) Task
Committee (ASCE 2000).

We trained ANNs using the same training data ex-
plained in the previous section. Figure 9 compares the
fraction of plumes detected by the SVMs, ANNs, and the
physical models during testing for the best-performing
monitoring networks. Even though both SVMs and ANNs
perform well compared to the physical model, improve-
ments are shown by the SVMs over the ANNs. As shown
in the figure, with increase in the network size, the proba-
bility of detecting more and more plumes increases.
Table 2 presents the locations as well as reliabilities pro-
vided by the top two best-performing networks of SVMs,
ANNs, and the physical models. Columns 3, 5, and 7
show the locations of these wells as selected by these
models. It can be seen that the reliability estimations of
SVMs are better (closer to the physical models) than those
of ANNs. It is also important to note that the best network

configurations identified by both SVMs and the physical
models are identical, whereas differences exist with that
of ANNs and the physical models. Columns 9 and 10 rep-
resent percentage change in network reliabilities by both
ANNs and SVMs as compared to the physical models.
Once again, reliabilities estimated by SVMs are closer to
the physical models than that of ANNs.

It is interesting to note that wells that have good per-
formance individually may not necessarily be in the best-
performing group. For example, well 6 has individually
the best detection performance, but it is not in the highest
detecting groups according to both SVM and the physical
model. Based on budgetary limits one can select the mon-
itoring network size. The higher the number of wells
within a network, the higher the degree of reliability
these wells provide and the higher the cost. The decision
problem is then to select the number and locations of the
wells that have the least cost for a given reliability level.
Alternatively, for a given number of wells, one may select
the network that provides the highest reliability.

Conclusions
We have shown a possible application of SVMs in

learning the relationship between network configurations
and ground water contamination detection reliabilities
that was obtained by ground water flow and transport
models. The flow and transport simulations were kept rel-
atively simple to save computational time. This is not
a limitation of the SVM approach. The approach shown
here can easily be extended to more complex site condi-
tions and flow and transport simulations. A continuous
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sampling scheme is also assumed, while in practice one
may need to consider the frequency of sampling. More
than 1000 samples generated from 10 possible monitor-
ing well locations and the corresponding reliabilities are
used for training and testing the SVM. Two hundred

Monte Carlo simulations were used to produce the reli-
ability values. Our initial test suggested that this number
is enough for the value of the reliabilities to be indepen-
dent of the number of simulations. A larger number of
potential monitoring locations can also be considered, but
a larger number of potential monitoring locations will
need a larger number of training and testing sets, which
can become computationally costly for both the physical
model and SVMs.

SVMs’ selected combination of best-performing
wells for all sizes of networks was identical with the one
obtained from the physical model. Not only were these
configurations identical, but they also gave very close es-
timates of reliabilities. These results are also better than
that of the most commonly used ANNs. The performance
of the strongly regularized Fourier kernel was slightly
better than that of the spline kernel. For a prespecified
error level of 0.001, the best value of capacity, C, seems
to occur between 30 and 100. The number of support vec-
tors remains more or less the same at about 456 (from a
training size of 510). The selection of the SVM hyper-
parameters is still a heuristic exercise.

Based on the results of this study, SVMs have shown
remarkable performance in learning network configuration/
reliability relationships obtained by the physical ground
water flow and transport models. The main contribution of
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Table 2
Selected Monitoring Wells Based on SVM, ANN, and Flow and Transport Simulation

Physical Model Trained SVM Trained ANN Percentage Change

Network Size Rank Well Nos. Reliability Well Nos. Reliability Well Nos. Reliability ANN SVM

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 1 6 0.475 6 0.455 4 0.474 0.21 4.21
2 4 0.44 4 0.426 6 0.439 0.23 3.18

2 1 3, 7 0.795 3, 7 0.79 3, 5 0.766 3.65 0.63
2 1, 5 0.76 1, 5 0.78 1, 5 0.687 9.61 2.63

3 1 3, 5, 10 0.87 3, 5, 10 0.884 3, 5, 10 0.849 2.41 1.61
2 1, 5, 8 0.84 4, 6,9 0.84 4, 6, 7 0.824 1.90 0.00

4 1 1, 4, 5, 9 0.935 1, 4, 5, 9 0.94 1, 4, 5, 9 0.913 2.35 0.53
2 3, 5, 8, 9 0.93 3, 5, 8, 9 0.935 3, 6, 7, 9 0.906 2.58 0.54

5 1 1, 3, 5, 7, 9 0.96 1, 3, 5, 7, 9 0.96 1, 3, 5, 7, 9 0.958 0.21 0.00
2 1, 4, 6, 8, 9 0.96 1, 4, 6, 8, 9 0.954 1, 3, 5, 9, 10 0.954 0.63 0.63

420 T. Asefa et al. GROUND WATER 43, no. 3: 413–422



the study lies in reducing the huge efforts required in using
physically based flow and transport models. One important
application of the present research is within the remediation
optimization framework. Once properly trained, SVMswill
effectively replace cumbersome and time-consuming flow
and transport codes that have to be run a relatively large
number of times in order to obtain the best remediation
strategy (Smalley et al. 2000). For example, Rogers and
Dowla (1994) and Johnson and Rogers (2000) used ANNs
to substitute time-consuming flow and transport models in
an optimization study of ground water remediation. Others
have used linear and nonlinear regression tools to sub-
stitute transport models (Lefkoff and Gorelick 1990; Ejaz
and Peralta 1995).

SVMs are based on state-of-the-art machine learning
techniques that have a solid statistical background, and
they show good promise in applications in hydrology in
general and in ground water in particular. We have shown
a forward process approximation application of SVMs.
Future work will focus on extending SVMs to address
hydrologic inverse problems. There are encouraging pre-
liminary applications in this area. For example, density
estimation (Vapnik 1998; Weston et al. 1999; Mukherjee
and Vapnik 1999) is a classical inverse problem that has
been tackled successfully using SVMs.
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Appendix: Kernels
The following are commonly used kernels for SVMs:

1. Simple dot product

Kðxi; xjÞ = xi d xj

2. Radial basis function

Kðxi; xjÞ = exp ð2cjxi2xjj
2
Þ

where c is user defined

3. Linear spline with an infinite number of points

For a one-dimensional case,

11 xixj 1 xixjminðxi; xjÞ2
xi 1 xj

2
ðminðxi; xjÞÞ2

1
ðminðxi; xjÞÞ3

3

For a multidimensional case,

Kðxi; xjÞ =
Yn

k = 1
Kkðxki ; x

k
j Þ

4. Strongly regularized Fourier kernel

For the one-dimensional case,

12c2

2ð122c cos ðxi2xjÞ1 c2Þ

where c is user defined

For the multidimensional case,

Kðxi; xjÞ =
Yn

k = 1
Kkðxki ; x

k
j Þ
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