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A Linear Programming Approach for 
the Weighted Graph Matching Problem 

H. A. Almohamad and S. 0. Duffuaa 

Abstract- A linear programming (LP) approach is proposed for the 
weighted graph matching problem. A linear program is obtained by for- 
mulating the graph matching problem in L1 norm and then transforming 
the resulting quadratic optimization problem to a linear one. The linear 
program is solved using a Simplex-based algorithm. Then, approximate 
0-1 integer solutions are obtained by applying the Hungarian method on 
the real solutions of the linear program. The complexity of the proposed 
algorithm is polynomial time, and it is O(72'L) for matching graphs of 
size n. The developed algorithm is compared to two other algorithms. 
One is based on an eigendecomposition approach and the other on a 
symmetric polynomial transform. Experimental results showed that the 
LP approach is superior in matching graphs than both other methods. 

Index Terms- Graph matching, Hungarian method, linear program- 
ming, optimization, recognition, structural pattern. 

I.  INTRODUCTION 

In pattern recognition, structured data of an object can be parti- 
tioned into a weighted graph [l], [2] defined by a set of vertices 
(nodes) and edges (weighted arcs). The problem of matching two 
objects represented by weighted graphs can be formulated as finding 
an optimum permutation matrix that minimizes a distance measure 
between both graphs. This problem is known as the weighted graph 
matching problem (WGMP) that includes the isomorphism problem, 
which is proved neither to be NP complete nor to have an efficient 
algorithm [3] ,  [4]. 

Many approaches to solve the WGMP have been proposed. You 
(51 and Tsai [l] employed tree search techniques for finding isomor- 
phisms between graphs that include both symbolic and numerical 
labels. The above methods always give the true optimum matching, 
but because of their combinatorial nature, they are impractical when 
analyzing large structures. Kitchen [2], [6] used a relaxation method 
to solve the matching problem in both qualitative and quantitative 
cases. 

Recently, Umeyama [3] proposed a polynomial time method based 
on the eigendecomposition of the adjancency matrix of a graph. With 
this technique, real optimum solutions that minimize the euclidean 
distance between a pair of graphs are obtained when the graphs are 
sufficiently close to each other. In [7], an approximate method based 
on a symmetric polynomial transform (SPT), which is invariant under 
permutation, was proposed for matching pairs of weighted graphs. 

In this paper, the WGMP is formulated as a linear programming 
(LP) problem, which is solved by using a simplex-based algorithm. It 
is shown that the complexity of the proposed algorithm is polynomial. 
The proposed approach showed superiority over the methods in 
[3] and [7] in matching weighted graphs. The rest of the paper is 
organized as follows: Section I1 presents the statement of the problem 
followed by reduction of the problem to a linear model in Section 
111. Section IV provides the linear programming formulation of the 
graph matching problem. Section V presents computational results 
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and comparisons with the methods [3] ,  [7]. Section VI concludes the 
paper. 

11. STATEMENT OF THE PROBLEM 

A weighted graph G is an ordered pair ( t i .  .r), where 7 '  is a set of 
I I  vertices in the graph, and .r is a weighting function, which gives 
a real nonnegative value .r( 0 , .  1 1 ,  ) to each pair of vertices (11,. t i J ) .  

An undirected graph is a graph in which the weights , r ( ~ ~ .  t i J )  = 
,r( I , , .  I , ,  ). For a weighted directed graph, .r( t i c .  v1 ) # s( 11,. oz) .  
The adjacency matrix &k; of a weighted graph G = ( 1 ' .  s) without 
self-loops is given by rlr; = {g , , } ,  where 

(1) 
g,, = .r( 11,. oJ ) i # j . .  
SZJ = 0 I = ]  

and where i .  j = 1.2. .  . . . I ? ,  and I t  is the number of nodes in the 
graph. The problem of matching two weighted graphs G = (11. s) 
and H = ( I P . ~ )  of the same number of vertices 71 consists of 
finding a one-to-one correspondence between 11 = ( 7 1 1 , 7 l 2 . .  . . . t i n  ) 
and 11' = ( ~ 1 .  w z .  . . . . ~ l ' ~ ~  ), which makes G and H as close as 
possible with respect to a certain norm. Using an n x n permutation 
matrix P = { I '8J}, the graph matching problem can be formulated 
in L1 norm as 

iiiiii I~--L-; - P . - I H P ' ~ I ~  (2) 

where l l . l [ l  denotes the L1 norm, that is, if -4 is an 1 1  x I? matrix, 
then 11-411, = E, E,  IO,,^ for i ,  j = 1 .2 . .  . . . 1 1 .  

At present, there is no polynonial time algorithm that can directly 
solve the minimization problem in (2) with 0-1 integral solutions. 
However, algorithms based on brute-force enemuration such as 
branch-and-bound and search enumerative techniques give integral 
solutions, but these algorithms have exponential complexity [ll]. 

111. REDUCTION TO LINEAR MODEL 

Let R1 be a residual 1 2  x 1 1  matrix such that 

RI = &; - p A i ~ p T  (3) 

where P is an orthogonal matrix having the property PPT = 
P' P = I, and I is the identity matrix. Multiplying both sides of (3) 
by P and substituting P T P  by I ,  we have 

R1 I' = .i<;P - I ' ; ~ H .  (4) 

Since I' is a permutation matrix, the L1 norm of (4) is 

IlRiPlli = IIRi11i = Il=lcP - P-4~111 (5 )  

which implies that the minimization problem given in (3) is equivalent 
to 

mill IIRIII~ = niin 11Ac;P - PAHII1 .  (6) 

Let us consider a residual 7 1  x 1 1  matrix R such that 

R = .ic;P - P ~ H  

and let the matrices R = {r t , }  and P = {ptJ} be partitioned by 
columns: 

T'EC(R) = {r11 . r .z , . . . . . rn l . r lz .  i - 2 2 . ' " .  

(7) 

r 1 L 2 .  . . . . r l n .  rz,, . . . . . r,,,, lT  

p n 2 .  ' ' ' * Pl ,, . r?, ,I , . . ' . P, R } T. 

(8) 

(9) 

T'EC( P) = (1111. p z i . .  . . . prrl  .piz.p22.. . . . 
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Then, (7) can be written in the form 

I * E C ( R )  = -4GH I * E C ( P )  (10) 

where AG:H is an t i 2  x 11’ constant matrix derived from the weights 
of graphs G and H .  It is clear from the above transformation that the 
problem of minimizing I(&;P- PAHII~ is equivalent to the problem 
of minimizing ( l d ~ ; ~  T’EC(P)II1. Thus, the WGMP in (6) becomes 

mill II17EC(R)((i = ii$n ( ( - ~ c ; H  T r E C ( P ) ( ( l .  (11) 

A consequent advantage of (11) is that the WGMP given in (2) is 
transformed from a nonlinear to a linear optimization problem in L1 
norm. As mentioned in Section 11, it is not easy to find direct integer 
solutions of (1 l), but a nearly optimum solution between 0 and 1 can 
be obtained by extending the domain of P to the set of real matrices 
whose sum of elements in any row or column is 1. The method of 
solving (11) with the above extension is developed in Section IV. 

IV. LINEAR PROGRAMMING FORMULATION 
The problem in (11) can be formulated as a linear program by 

introducing goal variables S, ,  T,. Any value of 1 -EC( P) that solves 
the linear system AGH I ’EC(P)  = 0 provides the minimum 
for problem (12). If such a solution exists, the linear programming 
solution will obtain it; otherwise, the solution driving (12) as close 
as possible to zero will be obtained. In this section, the method of 
goal variables is used to find an approximate real optimal solution 

In order to simplify the notation, let y = 1-EC( P )  = { p k } .  k = 
1 . 2  . . . . . n 2  denote in order the unknown variables {Pi,}./. j = 
1 . 2 . .  . . . n ,  as defined in I ?EC( P ) .  In the first instance, the problem 
consists of finding an optimal real basic solution p that minimizes 
the following 

for d*f;H 1 7 E C ( P )  = 0. 

(I-AGH 11111 P 2 0  (12) 

where dr;H is an n 2  x n 2  constant matrix, and y is an n 2  x 1 
unknown vector. Since --IC;H I -EC( P )  = 0 may not have a feasible 
solution, two sets of real positive goal variables S = {S,) and 
T = {T!} .  i = 1 . 2 . .  . . . n2 are introduced in (13) such that 

--k~ p + s - T = 0. (13) 

These goal variables can be interpreted as residuals of the equation 
&;HI)  = 0. Then, the linear minimization problem of II&;HVI(1 
becomes 

S . f .  - 4 G H I )  + S - T = 0 
p 2 O.S 2 0.T 2 0. (14) 

Furthermore, some additional constraints on the solution p should be 
included in (14). These constraints should reflect the fact that in a 
permutation matrix, the sum of elements in any row or column is 1. 
Assume P = {Pi ,} ,  i .  j = 1.2. . . . , n is a permutation matrix; then, 
there are 211 linear constraints that are formulated as follows: 

I 

The above constraints can be written in the matrix form 

B p = e  (16) 

where B = { b 2 , }  is a 217 x t t 2  unimodular matrix defined by 

b, ,  = 1 

b , ,  = 0 otherwise 

for I = 1 , 2 . .  . . , n and, 
J = I ,  i + n, I + 271, . . . , z + n( n - l), and (17) 

11 is an n 2  x 1 unknown vector defined in (9), and e is a 2 n  x 1 vector 
of ones. With the above constraints and since the basic solution p must 
be positive, the linear problem in (14) can be written as follows 

- 2  

min c S, + T,,, 
77, = 1 

p . 5 . T  

S.T. - 4 c ; ~  p + S - T = 0 

B p = ~  

p 2 0,s 2 O,T 2 0. (19) 

Because of the constraint Bp = e, the linear problem in (19) always 
has a basic optimal solution 0 5 p 5 1, and the objective function 
may have an optimum value zero, which is attained for Sm = 0 and 
T,,, = 0 for all m = 1 . 2  ;... n 2 .  

An upper and lower bound for the goal variables S,  and T, can 
also be found in order to restrict the feasible region of the above 
problem to the domain of real solutions A- (including S, and T, 
variables) in the range [0, 11. 

Assume now that G and H have weights between 0 and 1; then, 
the linear problem given in (18) has certain properties regarding the 
bounds of S,, and Tn,. Let TL and SL denote the optimum of T, 
and S,,, , respectively. Then, we have the following properties: 

Property 1: At optimality either T: or S: is greater than zero, 
which can be written as 

T:, > 0 implies Sk = 0 

and 

S7: > 0 implies TA = 0. 

This is known from the theory of linear programming [9]. 

and T,,, is given by 
Property 2: The absolute difference between goal variables Sm 

IS, - Tn,I 5 1 VI = 1 , 2  , . . . , n 2 .  

This can be shown as follows: the m th constraints that have T,  and 
S,,, as goal variables can be written as 

g t k p k j  - 
1 =1 I =  1 

hrj Pt1 = Sm - Tm 

where in  = ( 1  - 1 )n  + I .  Since the sum of the elements Pk3 on the kth 
row is equal to 1 (PzJ are not necessarily 0 or 1)  and 0 5 g z k  5 1, 
we have 

1 

0 5 gmrn 5 g r k p k j  5 gmax 5 1 
k = l  

where gmln and gmax are the minimum and the maximum elements 
in the matrix dr;, respectively. Similarly, let h,,, and h,,, denote 
the minimum and maximum elements in the matrix A H  respectively; 
then, we have 

Since gmin and gmax and h,,, and h,,, are between 0 and 1, then 
it follows that 

Ism - TmI I 1 

i.e., the second property is shown. 
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n  

Theorem 1: At optimality, 0 5 TZ 5 1, and 0 5 S:? 5 1. 
Proofi From Property 2, we have 

Method (a) Method (b) Method (c) Method (a) Method (b) Method (c) 
b n  (5.0.) b n  (S.D.) hcan (S.0.) b n  (S.0.) b a n  (S.0.) b a n  (5.0.) 

and from Property 1, if TZ > 0, then Sk = 0. By using Property 
2, we get 10 - TZl 5 1, which implies 

e - 0 . 1 0  

Method (a) Method (b) Method (c) 
n Mean(S.0.) Mean (S.0.) b n  (5.0.) 

0 5 T,:, 5 1. 

e  - 0.20 

fithod (a) Method (b) Method (c) 
Mean (S.0.) Mean 6.0.)  Mean(S.D.) 

Similarly, if SA > 0, then T:z = 0 by Property 1. Using Property 
2, we get IS:% - 01 5 1, which implies 

0 

Theorem 2: The optimal objective function of problem (20) 
cannot exceed n 2 .  

Proof: Let Z denote the objective function of (20) and Z* the 
optimal value of 2; then, from Property 1 and Theorem 1, we have 

n 2  .2  

Z* = c ( S :  + T r )  5 1 = ill. 
t = 1  , = 1  

We note that Theorem (2) and its proof are valid for the formulation 
given in (18), which has an optimal solution for 0 5 pt, 5 1. For 
the optimization problem given in ( l l ) ,  the matrix P is assumed to 
be a permutation matrix, and therefore, the elements P,, are 0 or 1. 
It follows that Theorem (2) is also valid for ( 5 )  since P,, = 0 or 1 
is included in the interval (0, 1). 

v. COMPARISON WITH OTHER METHODS 
The linear programming approach does not require that the eigen- 

values of the adjacency matrix of a graph be distinct, which is a 
requirement in the eigendecomposition approach [ 3 ] .  We believe that 
this is a limitation for the approach in [3]. However, to evaluate and 
compare the performance on graph matching and computation time, 
the following computer experiments were conducted. The following 
algorithms were implemented on an AMDHAL 5850 mainframe: a) 
linear programming approach, b) eigendecomposition method [ 3 ] ,  c) 
the symmetric polynomial transform [7].  

Graphs of different sizes with random weights at each arc were 
generated. Weights ranging from 0-1.0 were assigned to each arc in 
a graph G. A matching graph H was generated from graph G by 
adding uniformly distributed noise in the range of --e to +e to each 
weight in G and then shuffling the order of nodes to produce the 
matching graph H .  

Graphs of sizes ranging from 5 to 10 were produced as input to 
the algorithm. Noise levels ranging from 0 to 0.20 were generated 
for each graph H .  Fifty pairs of weighted directed and undirected 
graphs were generated and matched with each other by the above 
three algorithms. 

The criterion value for the correct match for method a) is 

and the average of the expected value E o ( n ,  e )  of the criterion J ( P )  
of method a) is given by 

E , ( n . e )  = r n ( n  - 1 ) / 2  

since the variance of the noise uniformly distributed in the range of 
--e to +e for the L1 norm is equal to e / 2 .  The criterion value for 
the correct match for methods b) and c) is 

and the average of the expected value Eb.,.( 1 1 .  e )  of the criterion J (  P )  
of methods b) and c) is given by 

Eb, , (n .e)  = e’n(n - 1) /3  

TABLE I 

ALGORITHM (Comparison of the performance of the present algorithm a) 
with an eigendecomposition method b) and the symmetric polynomial 

transform algorithm c).  (Fifty trials per datum were generated.) 
Case  o f  U n d i r e c t e d  Graphs  f o r  n  = 10 

PERFORMANCE EVALUATION OF THE LP-WEIGHTED GRAPH MATCHING 

Method (e) Method (b) KtM (c) 
e b a n  (S.0.) P Mean (S.0.) P b a n  (S.0.) o L(n.a) Eb.t(n.4 

0.00 0.00 (0.00) 50 0.00 (0.00) 50 0.00 (0.00) 50 0.000 0000 
0.05 2.27 (0.04) 50 I51 (6.87) 36 3.59 (12.8) 21 2.250 0.075 
0.10 4.42 (0.10) 50 5.78 (17.4) 21 5.35 (20.5) 13 4.500 0.300 
0.15 6.63 (0.87) 46 7.13 (26.9) 14 9.22 (25.6) 4 6.750 0.675 
0.20 10.6 (14.9) 38 10.7 (28.7) 2 9.30 (27.3) 1 9.000 1.200 

Case  o f  d i r e c t e d  Graphs  f o r  n = 10 

Method (a) h thod  (b) Method (c) 
e  b a n  (S.D.) g b n  6 .0 . )  q b n  6.0.) g L ( n , a )  Eb,dn,c) 

0.00 0.00 (000) 50 0.00 (0.00) 50 0.00 (0.00) 50 0.000 0.000 
0.05 2.24 (n.01) 50 1.29 (9.01) 42 0.21 (0.48) a 2.250 0.075 
0.10 4.26 (0.08) 50 3.15 (19.8) 33 1.89 (5.44) 34 4.500 0.300 
0.15 6.30 (0.16) 50 7.81 (28.7) 13 4.69 (7.59) 19 6,750 0.675 
0.20 8.50 (0.24) 5D 9.95 (29.8) 10 6.34 (10.3) 10 9.000 1.200 

an and e arc the rin of prepY and mise level, r u p c n v e l y .  b n  and (S.D.) give tk meam and 
8taWrddsvianons ofthe criterion value J(P), and p i s  the numbcrof optimum matchirqThe 
cxpactcdvelua ofthe criterion i s  given by L(n,e) for method (a),and by Eb,dn.e) for methods 
(b) and (c). 

TABLE I1 
CPU COMPUTATION TIME (SECONDS) FOR 

WEIGHTED UNDIREC~ED GRAPH MATCHING 
____ 

e - 0.20 1 e - 0.10 

1 10 

0.78 (0.02) 0.05 (0.01) 0.04(0 08) 
1.97(0.12) 008 (0.03) 0.07 (0.09) 
4.45(0.18) 0.11 (0.08) 0.13(0.12) 
9.06 (2.34) 0.16 (0.13) 0.25 (0.14) 
18.8 (9.40) 0.24(0.19) 0.49 (0.23) 
34.1 (16.7) 0.32 (0.25) 1.07 (0.52) 

0.75 (0.01) 0.05(0.Ol) 0.04(0.06) 
1.83 (0.10) 0.08 (0.03) 0.07 (0.07) 
4.1 7 (0.1 3) 0.1 2 (0.1 0) 0.1 3 (0.1 0) 
8.76(2.01) 0.16(0.12) 0.24(0.14) 
17.6 (8.23) 0.23 (0.20) 0.50 (0.27) 
32.1 (14.3) 0.32 (0.31) 1.07(0.55) 

1 IO 

0.71 (0.02) 0.06 (0.05) 0.05 (0.08) 
1.73 (0.09) 0.1 0 (0.07) 0.09 (0.09) 
3.91 (0.45) 0.14(0.10) 0.17(0.28) 
8.30(1.91) 0.20(0.13) 0.37(0.39) 
16.7 (7.05) 0.29 (0.19) 0.82 (0.53) 
30.4 (45.9) 0.38 (0.39) I .91 (0 62) 

0.68 (0.02) 0.06 (0.05) 0.05 (0.08) 
1.67(0.13) 0.09 (0.07) 0.09 (0.10) 
3.76 (0.37) 0.15 (0.09) 0.18 (0.24) 
7.96 (1.78) 0.21 (0.1 5) 0.37 (0.42) 
15.5 (6.95) 0.30 (0.20) 0.81 (0.54) 
28.9 (38.6) 0.40 (0.42) 1.92 (0.73) 

an and e are the sire of grapta and wise level, respectively. Mean end (S.0.) give the means and 

standard deviations of the total CPU t i m .  

since the variance of the noise uniformly distributed in the range of 
- r  to +-e for the Lp norm is equal to e 2 / 3 .  

The number of real optimum matchings obtained by each of the 
above methods was recorded. Means and standard deviations of the 
criterion value and the number of optimum matching (9) by each 
method for graphs of size n = 5 to 10 and noise levels e = 0.0, 
0.05, 0.10, 0.15, and 0.20 were recorded. Results for size n = 10 
are the only ones shown. 

Table I shows the results obtained from the above three algorithms 
for matching weighted directed and undirected graphs. Table I1 
provides CPU computation time for the case of undirected and 
directed graphs, respectively. 

Table I shows the number of the correct matching for graphs of 
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size t i  = 10 with noise levels ranging from 0 to 0.20. In all cases, the 
proposed algorithm a) gave better results than the other two methods. 
Especially when the noise c 5 0.10, algorithm a) found all correct 
matchings, whereas other methods start to deteriorate from = 0.O.j. 
In the general method, a) is more robust to changes in size and noise 
level. For the case of directed graphs, the proposed method identifies 
all the correct matchings, irrespective of size and error level. The 
other methods b) and c) improve in identifying the correct matchings, 
but they are still inferior to the proposed method. 

Table I1 shows the computation times for both undirected and 
directed graphs of the three methods with respect to size and noise 
level changes. The computation time of the proposed method is higher 
than methods b) and c). For a graph of size i t  = 10 with = 0.20, 
the CPU time is about 30 s, wherc the computation times for methods 
b) and c) are about 0.5 and 2.0 s, respectively. 

The complexity of the present algorithm is polynomial, i.e., 
O (  I t”L) ,  since LP can be solved in O [  t t t  ’ L ) ,  where t t )  is the number 
of variables, and L is the size of the LP problem. I t  is to be noted 
that the proposed method was implemented using a simplex-hascd 
code. This may result in higher computation timc, which is within 
reach, since the Simplex method is an cxponential algorithm but has 
shown acceptable performance in most practical applications. unlike 
branch-and-bound methods, which provide 100% correct matching 
with a computation time out of reach. 

VI. S U M M A R Y  AND CONCLUSION 

A method for matching pairs of weighted directed or  undirected 
graphs has been proposed. The problem of matching two graphs is 
formulated as a linear programming problem. The resulting linear 
program is solved using a simplex-based code of IMSL. Results 
obtained from the proposed method have shown that thc obtained 
solutions are clearly better than the ones obtained by the eigende- 
composition method [3] and the symmetric polynomial transform 
[8]. Due to their poor results, the latter two methods cannot be 
used for optimum graph matchings whcn the graph size and error 
magnitudcs increase. The proposed method has almost always given 

the correct rcsults even whcn the graph size increases ( n  = 10) 
and whcn the error injected is fairly high ( c  = 0.20). However, 
computation time of the proposed method is relatively high but within 
reach. This computation time can be improved by using an interior 
point mcthod-based algorithm for linear programming, such as the 
Karamaker algorithm [ 101. Interior point methods are polynomial 
timc algorithms for linear programming, unlike the simplex method, 
which is exponential time. Finally, the advantage of the proposed 
method is that i t  is robust to changes in graph sizes and noise levels. 

REFERENCES 

[I]  W. H. Tsai, and K. S. Fu, “Error-correcting isomorphisms of attributed 
relation graphs for pattern rccognition,” I€€€ Trans. Syst. Man Cyhern., 
vol. SMC-9, pp. 757-768. Dec. 1979. 

[ 2 ]  1.. Kitchen, “Relaxation applied to matching quantitative relational 
structures,” IEEE Trans. Syst. Mun Cyhern., vol. SMC-IO, pp. 96-101, 
Feb. 1980. 

[3]  S. Umeyama, “An eigendecomposition approach to weighted graph 
matching problcms.” /€€E‘ Trans. Putt. Anal. Machine Intell., vol. 10, 
no. 5, pp. 09-703, Sept. 1988. 

141 M. Garcy and D. S .  Johnson, Cornpuler and /nteractabilityc A guide to 
the Theory of NP-Coniplrteness. San Francisco, CA: W. H. Freeman, 
1984. 

[SI M. You and A. K. C. Wong, “An algorithm for graph optimal isomor- 
phism,“ in Proc. ICPR. 1984, pp. 316-319. 

[O] L. Kitchcn and A. Rosenfeld, “Discrete relaxation for matching rela- 
tional structures,” /EE€ Trans. Sy.st. Man Cybern., vol. SMC-9, pp. 
X69-864, Dec. 1979. 

[7] I t .  A. Almohamad, “A polynomial transform for matching pairs of 
weighted graphs,”J. AppliedMuth. Modeling, vol. 15, no. 4, Apr. 1 Y Y I .  

181 M. Bazaraa, J .  Jarvis. and H. Shcrali, Linear Programming and Network 
 flow^. New York: Wiley, 1990. 

191 A. Charncs and W. W. Cooper, Management models and industrial 
upplicutions of linear programming, Vol. 1. New York: Wiley, 1963. 

[ I O ]  C. C. Gonzaga, “An algorithm for solving linear programming programs 
in ( I (  I ) . ’  L ) operation,” in Progress in Mathematical Programming, 
IntcJrior Point and Related Methods (N. Megiddo, Ed.). New York: 
Springer-Vcrlag. 1988. 

[ 1 I ]  C y .  H. Papadimitriou and K. Stciglitr. Comhinarorial Optimization: Al- 
,yoJifhni und Complexity. Englewood Cliffs, NJ: Prentiee-Hall, 1982. 

[ 121 D. Dubois and H. Pradc, Fuzzy Sets and Systems: Theory and Applica- 
frons. New York: Academic, 1980. 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on October 30, 2009 at 13:12 from IEEE Xplore.  Restrictions apply. 


