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We present a family of kernels for strings based on the detection of local alignments,
a widely used principle to compare biological sequences. These kernels belong
to the family of convolution kernels introduced by Haussler (1999), and can be
implemented with dynamic programming. We highlight the relations between these
kernels and sequence alignment scores used in bioinformatics, and propose a solution
to overcome the issue of diagonal dominance they suffer from. When tested on their
ability to detect protein homology at the superfamily level on a benchmark data
set, they outperform other state-of-the-art methods.

1.1 Introduction

With the advent of high-throughput sequencing technologies, biological sequences
are accumulating at an unprecedented pace in databases. The need to analyze,
compare, and annotate these sequences is more than ever a central problem in
postgenomics. There has recently been a growing interest in the use of kernel
methods to process sequences, particularly for classification of sequences with
Support Vector Machines (SVMs). This trend has been accompanied by a growing
interest in the development of kernel functions for strings, which form the basic
ingredient that any kernel method is based on. Examples of string kernels include
the Fisher kernel (Jaakkola et al., 2000), spectrum kernel (Leslie et al., 2002),
mismatch kernel (Leslie et al., 2003), pairwise kernel (Liao and Noble, 2002), and
the string kernel proposed by Lodhi et al. (2002).

A kernel function can often be thought of as a measure of similarity. Different
kernels correspond to different notions of similarity. For example, each string kernel
mentioned above corresponds to one notion of similarity between strings, such as the
similarity of Fisher score vectors with respect to a hidden Markov model (HMM) for
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the Fisher kernel, or the similarity of the frequency of small blocks in the sequences
for the spectrum kernel.

Independent of kernel methods, the problem of assessing the similarity between
biological sequences has been the object of much investigation in computational
biology over the last three decades. The notion of local alignments (which we
review below) has emerged as a powerful approach to detecting evolutionary
relationships between sequences, and the measure of the best local alignment with
the Smith-Waterman algorithm (Smith and Waterman, 1981) or its fast heuristics
gapped BLAST, PSI-BLAST (Altschul et al., 1997), and FASTA (Pearson, 1990)
is nowadays the method of choice to measure the similarity between sequences.

The main motivation behind this work is the observation that the notions of
similarity between sequences defined by the string kernels developed so far differ
considerably from the notion of similarity based on local alignment. This suggests
that biologically more relevant kernels might be defined if the notion of similarity
they induce are more similar to those found useful by the computational biology
community, namely the similarity based on local alignment scoring.

The most direct way to reconcile kernel methods and classic measures of similarity
for biological sequences would be to consider a classic measure of similarity such as
the Smith-Waterman score as a kernel. However, it turns out that this choice is not
a valid kernel because it violates the condition of positive definiteness for certain
choices of parameters, as we show in the experimental part. Still, following the
avenue paved by Haussler (1999) and Watkins (2000), we propose a family of string
kernels based on the scoring of local alignments. Two strings are similar with these
kernels when they have many high-scoring local alignments, which is the property
that motivates this work.

We present promising results on a benchmark problem of remote homology de-
tection, where the new kernels outperform all other string kernels tested. However,
this performance is only obtained at the price of performing an operation on the
kernel values, which otherwise can be exponentially small even for sequences with
meaningful similarities.

The chapter is organized as follows. In sections 1.2 and 1.3 we recall the two
main ingredients we need, namely the classic notions of local alignment and Smith-
Waterman score on the one hand, and the idea of convolution kernels on the
other hand. In section 1.4 we introduce a family of convolution kernels called local
alignment kernels and present some of their properties. Their implementation is
discussed in section 1.5 and the issue of diagonal dominance is raised in section 1.6.
We conclude with experimental results on the problem of detecting protein remote
homology in sections 1.7 and 1.8.
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1.2 Sequence Local Alignment

Sequence
alignment

In this section we introduce basic notations and recall the classic notion of sequence
alignment and Smith-Waterman local alignment score.

1.2.1 Basic Notations

Let A be a finite set called the alphabet, typically the set of 20 amino acids or of
4 nucleotides {A,C,G,T}. Elements of the alphabet are called letters. A string of
length n > 0 is a concatenation of n letters, x = x1 ...%,. The empty string (of
length 0) is denoted by €, and the set of all strings is denoted by X = {e}UlJ;~, A™.
The length of a string x is denoted |x|. The concatenation of two strings (x,y) € X?
is written xy.

1.2.2 Alignments and Smith-Waterman Score

With these basic notations we can introduce the notion of alignment that plays an
essential role below:

Definition 1.1 An alignment (with gaps) © of p > 0 positions between two
sequences (x,y) € X2 is a pair of p-tuples:

™= ((Wl(l)a s ,7T1(p)) ) (7T2(1), e ,7r2(p))) € N
that satisfies

1<m) <m(2) <...<m(p) < |x[,
1< m(l) <m(2) <...<m(p) < |yl

The simple idea behind this formal definition is that the alignment encodes p
positions in each sequence that are aligned to each other, that is, the 7 (i)th letter
of x is aligned to the mo(i)th letter of y for 4 = 1,...,p. A convenient way to
represent an alignment is to write the two sequences one above the other, by placing
the p aligned positions on the same columns, and inserting the symbol ’—’ in both
sequences whenever necessary to ensure that only aligned letters are on the same
column (this representation is unique up to the choice of the position where the
symbol -* is inserted between two consecutively aligned positions).

As an example, if x = GAATCCG and y = GATTGC, then the 4-letter alignment
m=((1,2,4,6),(1,3,4,5)) is represented as follows:

G-AATCCG-
GAT-T-G-C

q The notion of alignment stems from the observation that the transformation
of sequences during evolution can roughly be described by substitutions of single
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letters, deletions, or insertions. As a result, a natural way to compare homologous
proteins is to align them in order to detect the conserved regions.

Let us denote by II(x,y) the set of all possible alignments between two sequences
x and y, and by |7| the number of positions aligned by the alignment 7 € II(x,y).
In order to evaluate how "good” an alignment 7 € II(x,y) is, and eventually find
the best one, various scoring schemes have been developed. We now present one of
the most widely used scoring schemes, often referred to as local alignment score. It
is defined in terms of a substitution matrix S € R**# and a gap penalty function
g : N = R such that g(0) = 0 as follows:

Definition 1.2 The local alignment score of an alignment 7 € II(x,y) is equal to
|| || —1

$5,0(m) 1= Y S (Tmy () Uma(s) — D, [9(mi (i + 1) = m1(3)) + g(ma(i + 1) — ma(i))]
=1 =1
' ' (1.1)

In other words, the local alignment score of an alignment 7 is the sum of the
substitution scores between the letters at the aligned positions, minus the sum of
the gap penalty when ’-’ symbols must be inserted between aligned positions. The
name "local alignment” comes from the fact that no gap penalty is counted before
the first and after the last aligned letters.

We can now define the local alignment score between sequences:

Definition 1.3 The local alignment score or Smith-Waterman score (denoted SW
score below) between two sequences (x,y) € X? is the local alignment score of their
best alignment, that is:
SWs,(x,y) :== max s . 1.2

5,9(%,¥) ell(ey) S,9(T) (1.2)
The SW score is a widely used measure of similarity between DNA or protein se-
quences. It can be computed with a complexity O(|x||y|) by dynamic programming
with the Smith-Waterman algorithm (Smith and Waterman, 1981), and lower com-
plexity heuristics are implemented in the widely used softwares gapped BLAST
(Altschul et al., 1997) and FASTA (Pearson, 1990).

1.2.3 Is the SW Score a Valid String Kernel?

A natural question at this point is the following: is the SW score (1.2) a valid kernel
for string? Remember that a function k : X? — R is a valid kernel if it is symmetric,
that is, k(x,y) = k(y,x) for any (x,y) € X2, and positive definite, that is:

Vn € NV(X1,...,Xn,01,...,0,) € X" X R?, Z a;a;k(x;,%x;) > 0. (1.3)

ij=1

We simply call such functions string kernels below. To the best of our knowledge,
there is no general result that states for which parameters S and g the local
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alignment score SWs 4 is a string kernel. As the following toy example shows,
there are cases where the SW score is a string kernel:

Proposition 1.4 Let g = 0 (no gap penalty) and S be a substitution matriz null
except for one letter a € A on the diagonal, that is, S(a,a) = 1 and S(u,v) =0
except if u = v = a. Then the score SWs 4 is a string kernel.

Proof Consider two sequences x and y with, respectively, m, and m, occurrences
of the letter a. With no gap penalty and no contribution to the score of aligned
letters except for pairs of a, the highest score is obtained when as many a as possible
are aligned, that is, min(m,, m,). Each aligned pair of a adds 1 to the score, which
shows that

SWs,q(x,y) = min(mg,m,).

This is clearly a valid kernel, as it can be written as an inner product ¢(x).4(y)
between two vector representations of x and y, for instance, by the mapping
¢ : X — RN defined by ¢(x); = 1 if i < m,, 0 otherwise. [

On the other hand, for more classic parameter S and g, we observe empirically
(see section 1.7) that the SW score can lack positive definiteness. This motivates
the study of convolution kernels in the next section, and the development of string
kernels based on local alignment scores in section 1.4.

1.3 Convolution Kernels

Convolution
kernel

In this section we recall the notion of convolution kernels for strings introduced
in a more general framework by Haussler (1999). Roughly speaking, convolution is
a powerful operation to combine two string kernels into a single one, particularly
suited to the detection of local similarities between sequences. More formally, they
are defined as follows:

Definition 1.5 Let k1 and ko be two functions X x X — R. The convolution of k;
and ks, denoted by ky x ko, is the following function:

V(x,y) € X%, ki xka(x,y) = > ki(x1,y1)k2(x2,¥2).- (1.4)

X1X2=X,y1Y2=Y
Haussler (1999) proved the following important result:
Theorem 1.6 The convolution of two string kernels is a string kernel.

This theorem implies that we can build complex string kernels by convolving
simple ones. Moreover, it can easily be checked that the convolution operation is
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associative, and that the convolution of p kernels ki, - -- , k, is the following string
kernel:
V(X,y) € x2a kl*"'*kp(xay) = Z kl(xlayl)"'kp(xpayp)‘

X1 Xp=X, Y1 Yp=y

Convolution kernels were introduced by Haussler (1999) in a more general context
than string kernels, and were, for instance, successfully applied to define kernels for
trees with applications in natural language processing (Collins and Duffy, 2002). In
the context of biological sequences, Haussler (1999) showed that the probability
P(x,y) of a pair of sequences under a pair HMM (Durbin et al., 1998) is a
convolution of basic string kernel and is therefore a valid string kernel, under some
assumptions on the model parameters. This result, which was proved independently
by Watkins (2000), makes a first link between string kernels and string alignment
scores. Indeed the probability P(x,y) studied by Haussler (1999) and Watkins
(2000) is related to the score obtained by global alignment of two strings with
the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970), at least if the
probability is replaced by a log-odds score which takes the form

P(x,y)
q(x)q(y)

where ¢ is a background model (Durbin et al., 1998).

The results, however, are of little practical interest for at least two reasons. First,
it is commonly recognized in computational biology that local alignment scores like
the SW score are more relevant than global alignment scores to assess the similarity
between sequences. Second, the probabilities of two sequences under a pair HMM
model are usually much too small (typically 107190 to 1071999) to be of any interest
as kernels. The objects of the next two sections are to overcome both these issues,
first by proposing a convolution kernel based on local alignment score (section 1.4),
and then on making it useful in real-world application (section 1.6).

s(x,y) = log

?

1.4 Local Alignment Kernels

2004/07/27 10:51

Following the approach pioneered by Haussler (1999), we define in this section a
complex string kernel by convolution and sum of simple kernels. Let us therefore
start by defining three basic string kernels, which will serve as ”basic blocks” to
derive a more complex kernel. To do so, we assume a substitution matrix S and a
gap penalty function g are given, and we define the three kernels as functions of S
and g.

The first basic kernel, denoted by kg, is a trivial kernel constantly equal to 1,
that is:

V(x,y) € X%, ko(x,y) = L. (1.5)
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Local alignment
kernel

This kernel is useful to compare the parts of two sequences that don’t contribute
to the local alignment score, that is, the substrings before and after the alignment.

The second basic kernel, which we call k,, is used to quantify the similarity of
aligned letters. It is defined as follows:

0 if [x| # Lor [y| # 1,

(1.6)
exp (BS(x,y)) otherwise,

V(x,y) € X3, kP (x,y):= {
where 8 > 0 is a parameter. Observe that it is null as soon as one of the sequences is
not exactly reduced to a single letter. Observe also that this is only a string kernel
for the values of 3 which ensure that the matrix (exp (85(a,b))), yc 4 is positive
definite. This is the case whatever 8 > 0 iff the matrix (S(a, b)), yc 4 is conditionally
positive definite (Berg et al., 1984), which can be checked case by case (this holds
in particular if the matrix (S(a, b)), yc 4 is positive definite).

Finally, to translate the penalty gap model, we define the third basic string kernel,
which we denote kg, as follows:

V(x,y) € X%, kP (x,y) = exp [B (9(|x]) + g(Iy))], (L.7)

where § > 0 is the same parameter as in (1.6), and g is the gap penalty function. k,
is a valid string kernel, because it can be written as a scalar product kéﬂ )(x, y) =
qﬁé’g )(x). gﬁ ) (y) between 1-dimensional vectors given by ¢§B ) (x) = exp (Bg(|x|)).

Let us now combine these three basic kernels by convolution. For any fixed n > 0,
consider first the following string kernel:

(n-1)
k) = ko x (KO % k)« k) % ko,

This kernel quantifies the similarity between two strings x and y based on local
alignments of exactly n residues. Indeed the convolution operation sums up the
contributions of all possible decompositions of x and y simultaneously into an
initial part (whose similarity is measured by ko), a succession of n aligned residues
(whose similarity is measured by 3% )) possibly separated by n — 1 gaps (whose
similarity is measured by kéﬂ )), and a terminal part (whose similarity is measured
by ko). For n = 0 (no residue aligned), we simply define the kernel kgg)) = ko-

In order to compare two sequences through all possible local alignments, it is
necessary to take into account alignments with different numbers n of aligned
residues. A simple solution is to sum up the contributions of all kernels k(g ) for
n > 0, which results in the following local alignment kernel (which we call LA
kernel below):

o

KO =Y kD) (1.8)

=0

Note that for any pair of finite-length sequences (x,y) € X? the right-hand term of
(1.8) estimated at (x,y) is a convergent series, because it has only a finite number
of non-null terms. Therefore kéﬁfz is defined as a pointwise limit of string kernels,
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and is therefore a string kernel by closure property of the class of positive definite
kernels under pointwise limit (Berg et al., 1984).

The following theorem, whose proof is postponed to appendix A, highlights the
relations between the LA string kernel, the local alignment scores of all possible
alignments, and the SW score:

Theorem 1.7 The LA kernel (1.8) is expressed in terms of local alignment scores
as follows:

V(x,y) € X% kDY) = Y exp(Bssy(x,y,m). (1.9)

TEMN(x,y)

The SW score (1.2) is related to the LA kernel by the following equality:

V(x,y) € X2, BETOO% In k;ﬂ(x,y) = SWs,4(x,¥). (1.10)
These equations clarify the link between the LA kernel (1.8) and the SW score
(1.2), and highlight why the SW score might fail to be a valid string kernel. First,
the SW score only keeps the contribution of the best local alignment to quantify
the similarity between two sequences, instead of summing up the contributions of
all possible local alignments like the LA kernel does. Second, the SW score is the
logarithm of this alignment score, and taking the logarithm is usually an operation
which does not preserve the property of being positive definite (Berg et al., 1984).

1.5 Kernel Computation

2004/07/27 10:51

A naive computation of the LA kernel using (1.9) would require a sum over |II(x,y)|
alignments, resulting in a complexity exponential with respect to |x| and |y|. In this
section we show that this expression can be factorized and computed using dynamic
programming by a slight modification of the Smith-Waterman algorithm, at least
if the gap penalty function is affine. This efficient computation is summarized in
the following theorem:

Theorem 1.8 Let (x,y) € X2 be two strings, and g be an affine gap penalty
function:

{gw) =0, (L.11)
g(n) =d+en—1)ifn>1,

then the LA kernel k}ﬂ (x,y) between x and 'y is equal to

k) (x,y) = 1+ Xa(|x|, ly]) + Ya (x|, |y]) + M(|x], |y]),
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Dynamic
programming

Rational kernels

where M(’L,]),X(Z,]),Y('L,]),Xz(l,j), and Yé(l,]) for0<i < |X|, and 0 < j < |Y|
are recursively defined by the following equations:

(M (i,0) = M(0,j) =0,
X (i,0) = X(0,4) =0,
§Y(,0) =Y(0,5) =0,

X2(Z70) = XZ(OJJ) = 07
\}/2(170) = }/2(07.7) =0,

and fori=1,...,|x| and j=1,...,|y|:

(M(i,§) = exp(BS(zs,y;))
M4+XG—1,j-1)+Y({—1,j—1)+M@G—1,j—1)],

X(i,j) =exp(Bd)M(i—1,5)+exp(Be)X (i —1,j),

Y(i,j) =exp(Bd)[M(i,j—1)+ X(i,j —1)] +exp(Be)Y (i,j — 1),

Xo(i,j) = M(i—1,5)+ X2(i — 1,7),

(Y2(i,7) = M(i,j— 1)+ X2(i,5 — 1) + Ya(i,j — 1).

The proof of theorem 1.8 is postponed to appendix B. One can observe that the
Smith-Waterman algorithm (Smith and Waterman, 1981) to compute the SW score
is obtained from these equations by replacing each addition by a max operation,
and taking the logarithm of the result divided by f.

An equivalent way to describe the implementation of the LA kernel is through the
weighted finite-state transducer (WFST) shown in figure 1.1 (see the legend for an
explanation). The implementation as a WFST is possible because each basic kernel
we defined can be implemented using such automata, and because the addition and
convolution of WFST can be computed by WFST. Such kernels are called rational
kernels (Cortes et al., 2003).

1.6 Diagonal Dominance Issue

In many cases of practical interest the LA kernel defined in (1.8) suffers from the
diagonal dominance problem, namely the fact that k(Lﬁj(x,x) is easily orders of
magnitudes larger than k(Lﬂ X(X, y) for two different sequences x and y, even though x
and y might share interesting similarities. This is particularly evident for increasing

values of the parameter (3, because from (1.10)

1)

X, X
W ~ exp B (SWs g (x,2) — SWs4(x,¥))
LA\

when 8 — oo. In practice, it has been observed that SVMs don’t perform well in
this situation. Indeed diagonal dominance implies that different objects are almost
orthogonal in the feature space, and it can be shown that instead of learning a
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0:0/1

Figure 1.1 A weighted finite-state transducer is a directed graph with an initial state
B and a terminal state E. To each edge is attached a label of the form w : v/w. The label
corresponds to an action of processing an input sequence x and an output sequence y,
and a weight associated with the action. The action of a label u : v/w is "read nothing
(if w = 0) or one letter a € A (if v = a) in x, and output nothing (if v = 0) or one letter
be A (if v =b) in y”. The weight associated with the action is w, with the conventions
that m(a,b) = exp(8S(a,bd)), D = exp(Bd), and E = exp(fBe). A path from B to E is
compatible with two sequences x and y if the successive actions performed on the edges
along the path correspond to reading x and outputting y. The score of a compatible path
is the product of its edge weights. The kernel k(LB X(X, y) is computed by the automaton
shown on this picture as the sum of the scores of all compatible paths with x and y.
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classifier with good generalization performances, an SVM tends only to memorize
the data in that case.

The exponential dependency of the LA kernel with respect to the 8 parameters
suggests the following normalization, in order to remove the diagonal dominance
when £ increases:

B6y) = 3k ). (112
An obvious problem with this operation is that the logarithm of a positive definite
kernel is not a positive definite kernel in general (Berg et al., 1984). Still Ef X has
several interesting properties. It increases monotonically with k(ﬁg, and by (1.9)
it is always non-negative, because at least one local alignment between any two
sequences has a non-negative score (at worst the score of aligning no residue is
null). Besides, by (1.10), INC(LBX behaves like the SW score for large 8. Intuitively, 12:262
is therefore of the order of magnitude of the SW score but includes contributions
from all possible local alignments.

Because I::gﬁ might not be a positive definite kernel, some care must be taken
to ensure that the SVM converges to a large margin discrimination rule during
learning. We tested two approaches to make the symmetric function l::(L’g fz positive
definite on a given training set of sequences, which we now describe.

The first approach we propose is to add to the diagonal of the training Gram
matrix a non-negative constant large enough to make it positive definite. In all
experiments presented below we perform this operation by subtracting from the
diagonal the smallest negative eigenvalue of the training Gram matrix, if there are
negative eigenvalues. The resulting kernel, which we call LA-eig, is equal to I::gﬁ
except eventually on the diagonal.

We compare this approach to the method proposed in Scholkopf et al. (2002)
which consists in working with the empirical kernel map. In this case, for a given

training set xi,...,x%, of sequences, each possible sequence x is mapped to the

. . T
n-dimensional vector (k(LB X(X, X1)yenes kﬁz (x, xn)g‘ . These vector representations

are then used to train the SVM and predict the class of new sequences. The
corresponding kernel between two sequences x and y, which we call the LA-ekm
kernel, is therefore equal to ) 1, k(ﬁz(x,xi)kﬁﬂ (y,x%;). On the training set, this

amounts to taking (I::gﬁ) IE(LLB as a new symmetric positive definite Gram matrix.

1.7 Experiments

The accuracy of an SVM combined with the LA-eig and LA-ekm kernels is evaluated
with the benchmark procedure used in Liao and Noble (2002). Three other state-of-
the-art methods were also run on this benchmark, in order to compare them with
the method proposed in this chapter: SVM with a Fisher kernel (Jaakkola et al.,
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2000), SVM-pairwise (Liao and Noble, 2002), and SVM with a mismatch kernel
(Leslie et al., 2003).

The problem is to classify protein domains into superfamilies in the structural
classification of proteins (SCOP) (Murzin et al., 1995) version 1.53. The data,
already used in Liao and Noble (2002),1 consists of 4352 sequences extracted from
the Astral database (similar sequences were removed with an E-value threshold
of 1072), grouped into families and superfamilies. For each family, the protein
domains within the family are considered positive test examples, and protein
domains within the superfamily but outside the family are considered positive
training examples. This yields 54 families with at least 10 positive training examples
and 5 positive test examples. Negative examples for the family are chosen from
outside of the positive sequences’ fold, and were randomly split into training and
test sets in the same ratio as the positive examples. For more details on this data set
and the experiments, the reader is referred to Liao and Noble (2002) and Jaakkola
et al. (2000).

To measure the quality of the methods, the receiver operating characteristic
(ROCQC) scores, the ROCs5¢ scores, and the median rate of false positives (RFP)
are used. The ROC score is the normalized area under a curve that plots true
positives against false positives for different possible thresholds for classification
(Gribskov and Robinson, 1996). The ROCjq is the area under the ROC curve up
to 50 false positives, and is considered a useful measure of performance for real-
world application. The median RFP is the number of false positives scoring as high
or better than the median-scoring true positives. These measures were used for
evaluation in Jaakkola et al. (2000) and Liao and Noble (2002).

1.71 SVM

All methods based on SVM were tested with a common procedure, which we now
describe. We used the Gist publicly available SVM software? which implements the
soft margin optimization algorithm described in Jaakkola et al. (2000). For each
kernel k to be tested, the following systematic preprocessing was performed. First,
all points were normalized to unit norm in the feature space and separated from
the origin by adding a constant to the kernel, resulting in the following kernel:

k(x,y)
k(x,x)k(y,y)

The necessity to separate the points from the origin stems from the fact that in
the implementation we use, all separating hyperplanes are required to pass through
the origin. Second, because most classification problems below are very unbalanced
in the sense that the numbers of positive and negative examples are very different,

knorm(xa}’) = (113)

1. Available from www.cs.columbia.edu/compbio/svm-pairwise .
2. Available from http://microarray.cpmc.columbia.edu/gist .
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we used a class-dependent regularization parameter. This amounts to adding to
the diagonal a constant 0.02a4/0.02a to all positive/negative examples, where
a4 /a_ is the fraction of positive/negative examples in the training set (see Liao
and Noble, 2002; Jaakkola et al., 2000, for details and justifications).

1.7.2 SVM-Pairwise Kernel

We reproduced the implementation of the best method tested in Liao and Noble
(2002). For a given training set of size m, each sequence x € X is represented by
a feature vector UP¥(x) of dimension n, where each coordinate is the E-value of
the SW scores SW(x,y;) (1 <i < n) between x and a sequence y; in the training
set, as computed by the SSearch software (Lipman and Pearson, 1988). The Smith-
Waterman algorithm here uses the BLOSUM 62 substitution matrix, gap opening
penalty of 11, and gap extension penalty of 1. Following Liao and Noble (2002) the
kernel is defined as a radial basis function kernel on the vectors UP* (x) normalized
to unit length, that is:

kP (x,y) = exp (—L ( TP (x) Upw(y)“)2> )

202 \[[UP ()|~ [[UP=(y)

where the width o is the median Euclidean distance (in the feature space) from any
positive training example to the nearest negative example.

1.7.3 SVM-Fisher Kernel

The SVM-Fisher method (Jaakkola et al., 2000) represents any sequence x € X by
a fixed-length vector U(x), namely the gradient of the log-likelihood of x under a
profile HMM probabilistic model, with respect to the emission parameters of the
model. We followed exactly the procedure described in Jaakkola et al. (2000).

1.7.4 Mismatch Kernel

The mismatch kernel (Leslie et al., 2003) consists in representing a sequence by the
set of fixed-length blocks it contains (typically three to six amino acids long), and
augmenting this set by the blocks obtained by mutating a small number of amino
acids (typically one or two) in the blocks observed. The mismatch kernel between
two sequences is the inner products between these bag-of-blocks representations.
We tested the kernel based on blocks of length 5, with up to 1 mutation, as it was
reported to have the best performance in Leslie et al. (2003).

1.7.5 Local Alignment Kernels

As explained in section 1.5 we compute the LA kernels using dynamic programming.
These kernels have several parameters: the gap penalty parameters e and d, the
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Table 1.1 ROC, ROCso and median RFP averaged over 54 families for different kernels.
The LA-eig and LA-ekm kernels with 3 = +oco correspond to the SW score (modified to
become positive definite on the set of proteins used to train the SVM).

Kernel Mean ROC | Mean ROCso | Mean mRFP
LA-eig (8 = +0) 0.908 0.591 0.0654
LA-eig (3 = 1) 0.912 0.612 0.0626
LA-eig (8 = 0.8) 0.908 0.597 0.0679
LA-eig (8 =0.5) 0.925 0.649 0.0541
LA-eig (8 = 0.2) 0.923 0.661 0.0637
LA-eig (3 = 0.1) 0.868 0.429 0.111
LA-ekm (8 = +00) 0.916 0.585 0.0580
LA-ekm (38 = 1) 0.920 0.587 0.0539
LA-ekm (3 = 0.8) 0.916 0.585 0.0592
LA-ekm (8 = 0.5) 0.929 0.600 0.0515
LA-ekm (8 = 0.2) 0.877 0.453 0.125
LA-ekm (8 = 0.1) 0.596 0.052 0.500
Pairwise 0.896 0.464 0.0837
Mismatch 0.872 0.400 0.0837
Fisher 0.773 0.250 0.204

amino acid mutation matrix s, and the factor # which controls the influence of
suboptimal alignments in the kernel value. A precise analysis of the effects of these
parameters would be beyond the scope of this chapter so we limit ourselves to the
analysis of the effect of the 8 parameter. In order to be consistent with the SVM-
pairwise method the substitution matrix is always the BLOSUM 62 matrix and the
gap parameters are always (e = 11,d = 1) below.

1.8 Results

2004/07/27 10:51

Table 1.1 summarizes the performance of the different methods in terms of ROC,
ROCs0, and RFP scores averaged over all 54 families tested. We tested the local
alignment kernels LA-eig and LA-ekm for several values of § ranging from +00, in
which case they are derived from the SW score (1.12), to 8 = 0.1.

These results show that both LA-eig and LA-ekm perform best for 8 in the range
of 0.2 to 0.5, and have almost similar performances in that case. This suggests that
the normalization of 121%2 into a positive definite kernel through the empirical kernel
map of Scholkopf et al. (2002) or by subtracting the smallest negative eigenvalue
from the diagonal has little influence on the final performance.

Second, the fact that the performance of the LA-eig and LA-ekm kernels is better
for B in the range of 0.2 to 0.5 than for 8 = oo shows that the SW score as a
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Figure 1.2 ROC score distribution for different kernels. The curve denoted LA kernel
corresponds to the LA-eig kernel with 8 = 0.5. The curve denoted SW kernel corresponds
to the LA-eig kernel with 8 = oo, which is equal to the SW score up to a constant on the
diagonal.

kernel is outperformed by variants which take into account suboptimal alignments
to quantify the similarity between protein sequences.

The results obtained with the Fisher, pairwise, and mismatch kernels are consis-
tent with Jaakkola et al. (2000), Liao and Noble (2002), and Leslie et al. (2003).
The pairwise and mismatch kernels perform almost at the same level, with some
advantage for the pairwise kernel in terms of ROC and ROCjq scores. They both
outperform the Fisher kernel on this benchmark, but this is likely due to the facts
that only a single HMM is used to build the Fisher score vector for each family,
on the one hand, and that no protein outside the training data set was used to
train the HMM, on the other hand. In more realistic conditions, the Fisher ker-
nel performs roughly at the same level as the mismatch kernel (C. Leslie, private
communication).

More important, most of the LA kernels tested slightly outperform all three other
methods in this benchmark. As an illustration, the distribution of ROC, ROCjsg, and
median RFP scores for all three methods and the LA-eig kernel with 8 = 0.5 and
B = oo are shown in figures 1.2, 1.3 and 1.4. In each case a higher curve corresponds
to a more accurate remote homology detection method. The LA-eig kernel with
B = 0.5 retrieves more than twice as many families as the best other method tested
(the pairwise method) at a ROCjy score of 0.8 or higher. This remains true for a
wide range of values for 8, including 8 = +oc. This means that the SW score as a
kernel also outperforms the Fisher, pairwise, and mismatch kernels.
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1.8.1 Complexity

Another important factor for practical use of these kernels is their computation
cost and speed. The mismatch kernel has a linear complexity with respect to the
sum of the sequence lengths, and is by far the fastest to operate. The complexity
of the LA kernel is proportional to the product of the sequence lengths. Moreover,
the LA kernel is faster to compute for 8 = 400 (SW score) than for other values of
B, because in that case all computations can be performed with sum and max
operations on integer instead of logarithms on floating point real numbers. In
our experiments the computation of the SW kernel was 4 times slower than the
computation of the mismatch kernel (using the SSEARCH software for the SW
score, and an implementation of the mismatch kernel described in Leslie et al.
(2003), likely to be optimized in the future). The computation of the LA kernel for
other values of § was 2 orders of magnitude slower than the case 8 = 0o, using a
very naive implementation of the dynamic programming algorithm.

The computation of the kernel Gram matrix on the training set for SVM-pairwise
and the LA-ekm kernels requires O(n?) further operations to multiply the empirical
kernel map matrix by its transpose. Only O(n?) are approximately required by the
LA-eig kernels to compute the smallest eigenvalue using the power method (Golub
and Van Loan, 1996) and subtract it from the diagonal. However, in both cases
this operation is very fast compared to the time required to compute the LA kernel
values or E-values.

Finally, classification of a new sequence with SVM-pairwise or the LA-ekm kernels
requires computing the explicit empirical kernel map representation of the sequence,
that is, computing n E-value or LA kernels. In the case of the spectrum and LA-eig
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Figure 1.4 Median RFP distribution for different kernels.

kernels, the kernels are only computed between the new sequence and the support
vector sequences, which usually form only a subset of the training set. Because the
performances of LA-eig and LA-ekm are very similar, this suggests a preference for
the former.

1.9 Discussion and Conclusion

In this chapter we introduced a family of kernels specifically adapted to protein
sequences, based on the detection of high-scoring local alignments. These kernels
are biologically motivated, and extend classic work on local alignment scoring to
the framework of kernel functions.

The theoretically valid local alignment kernels we come up with suffer in practice
from diagonal dominance. Hence we employed tricks to turn them into useful
kernels, by taking a logarithm and adding a constant on the diagonal, or by using the
empirical kernel map. The resulting kernels significantly outperform all other state-
of-the-art methods on a benchmark experiment of SCOP superfamily recognition,
which was designed to simulate the problem of remote homology detection.

The remarkable accuracy of our method certainly comes from the combination
of two widely used algorithms. On the one hand, the SVM algorithm is based
on a sound mathematical framework and has been shown to perform very well
on many real-world applications. One of its particularities is that it can perform
classification of any kind of data, such as strings in our case, as soon as a kernel
function is provided. On the other hand, local alignment scores, in particular the
SW score, have been developed to quantify the similarity of biological sequences.
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Their parameters have been optimized over the years to provide relevant measures
of similarity for homologous sequences, and they now represent core tools in
computational biology.

However, direct pairwise comparisons of sequences through local alignment scores
such as the SW scores are often considered naive and weak methods to detect remote
homology. They are usually outperformed by methods such as PSI-BLAST which
extend pairwise comparisons to pools of sequences extracted iteratively. The main
contribution of this chapter is to show that pairwise sequence comparison can be
extremely powerful when used as a kernel function combined with an SVM, and
that the SW score itself provides a state-of-the-art method for remote homology
detection when used as a kernel. An interesting conclusion of our experiments is that
the SW score, however, is outperformed by local alignment scores which sum up the
contributions of all possible local alignments. Summing up over local alignments has
an important cost in terms of computation time due to the operations required with
floating point numbers, but can be worth the cost when one is interested in precision
more than speed. On the other hand the SW score itself is computed by dynamic
programming and is therefore slower to compute than the mismatch kernel which
it outperforms. Here again a tradeoff must be found between speed and accuracy,
depending on the application. However, due to its wide use in computational biology
the SW score has been precomputed and stored in databases such as KEGG’s SSDB
(Kanehisa et al., 2002) for virtually all known or predicted proteins of sequenced
genomes, which suggests that practical applications for the Smith-Waterman kernel
could be implemented in relation to such databases.

The only parameter whose influence was tested is the parameter S of the LA
kernel, which controls the importance of the contribution of nonoptimal local
alignments in the final score. It should be pointed out here that the optimal values
for § we observed (in the range of 0.2 to 0.5) are only optimal for an average
performance on the 54 families tested, and that the optimal value for each family
might fluctuate. Moreover, a number of other parameters could be modified, in
particular the gap penalty parameters and the similarity matrix between amino
acids, and the optimal values for 8 might also depend on these parameters. Further
theoretical and practical studies, which are beyond the scope of this chapter, should
be performed to evaluate the influence of these parameters. In particular, it would
be interesting to know for which values of these parameters the SW score itself is
a valid kernel, and which parameter tuning results in the most accurate remote
protein homology detection.

An important open problem with the LA kernels as well as with most other
string kernels is the following: how to make the kernel independent of the lengths
of the sequences compared. Indeed long sequences typically result in small kernel
values when the kernel is normalized with (1.13). While much work has been done
to estimate the significance of alignment scores for varying sequence length, these
approaches remain difficult to adapt to the kernel framework. The importance of
this issue might be underestimated in the benchmark experiment presented in
this chapter, because protein sequences in a SCOP family tend to have similar
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sequence lengths. However applying kernel-based homology detection in a more
realistic setting might reveal important effects on this issue.

While we focused in this paper on the application of the new kernels to the
problem of remote homology detection, it should finally be pointed out that
possible use of these kernels, and more generally of all other string kernels, go
beyond this single goal. In combination with SVM, string kernels can be applied
to various classification and regression tasks such as gene function, localization, or
structure prediction. Moreover recent studies suggest that kernels provide a useful
framework for integrating and performing inference from heterogeneous data (Vert
and Kanehisa, 2003; Yamanishi et al., 2003), which we plan to investigate in the
future.
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Appendix A: Proof of Theorem 1.7

In this proof we assume the similarity matrix S and gap penalty function g are
fixed, and remove them as subscripts in sg 4 and SWs , for convenience. For any
two sequences (x,y) € X2, let

I (x,y) = {7 € I (x,¥) : m1(n) = [x],m2(n) = |y[}.

We can prove a first useful result:

Lemma 1.9 With the notations of theorem 1.7, the following holds for any two
sequences (x,y) € X andn > 1:

Y exp(Bs(x,y,m) = ko xkak (by < k)" (x,y),  (1.14)
weM (x,y)
and for n = 0:
z €xp (ﬂS(X7Y77r)) = kO(XJy) (115)
€Y (x,y)
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Proof Let us proceed by induction on n. For n = 0, II%(x,y) is reduced to the
singleton {@} (the alignment where no position is aligned), which has a null score.
As a result:

Y. e (Bs(x,y,m) = exp (Bs(x,y,0)) = 1 = ko(x,),

7r€H8 (x,y)

which proves (1.15) for any (x,y) € X?.

For n = 1, II% (x,y) is reduced to the singleton {(|x],|y|)} (only the last letters
are aligned). The score of this alignment is S(z|x|,y|y|). On the other hand, by
(1.4), (1.5), and (1.6), the following holds:

ko * ko(x,y) = 2 ko(x1,¥1)ka(X2,y2) = exp [BS(€)x| Yjy|)] -

X1X2=X,y1Y2=Y

This proves (1.14) in the case n = 1, for any (x,y) € X2.

Let us now suppose that (1.14) is true at the level n — 1, and prove it is
then true at the level n. Let (x,y) € X2 be two sequences. Then any alignment
7 € I (x,y) induces a decomposition X = X1XpX3, With X1 = 21 -+ T, (n_1),
X9 = Ty (n-1)41° " Z|x—1, and X3 = T (and similarly for y = yi1y2ys). By
construction, the alignment f(7) obtained from 7 by removing the last aligned
positions satisfies f(m) € TI%(x1,y1). Conversely, it is easy to see that for any
decompositions x = x1X3x3 and y = y1y2y3 with |x3| = |ys| = 1, and for any
m € M° ,(x1,y1), we can find a unique n' € II%(x,y) such that f(z') = m,
namely the alignment obtained by adding to the alignment 7’ the pair (|x|,|y]).
This bijection enables us to write

D> exp(Bs(x,y,m) =

w€ellf (x,y)

> Y exp (Bs(xi,ys ), (1.16)

X=X1X2X3,y=y1¥2¥3 7' €10 _, (x1,y1)

where the first sum in the right-hand side is over all decompositions of x and y
with |X3| = |y3| =1.
By definition of the local alignment score (1.1), we have for any « € II9 (x, y):

s(x,y,m) = s(x1,y1, f(7) + g(1x2]) + 9(Iy2]) + S(@ x> y1y)),
and therefore, by (1.7) and (1.6):

exp (Bs(x,y,m)) = exp (Bs(x1,y1, f(7))) -kg(X2,¥2)-Ka(X3,¥3)- (1.17)
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Observing that k,(x3,y3) is null when x3 or y3 is not reduced to a single letter, we
can plug (1.17) into (1.16) to get

Y exp(Bs(x,y,m))

Weng(x7y)
_ Z Z exp (Bs(x1,¥1, f(7))) -kg(x2,¥2)-ka(X3,¥3),
X=X1X2X3,y=y1¥2¥s 7€ll® _, (x1,y1)

(1.18)

where the first sum in the right-hand side is now over all possible decompositions
of x and y with (x1,X2,X3,¥1,y2,y3) € X°.

Using the induction hypothesis and the definition of convolution we can now
conclude as follows:

Y e (Bsx,y,m)

well} (x,y)

= Z Z exp (Bs(x1,y1,7)) .kg(x2,y2).ka(x3,y3)

X=X1X2X3,Y=Y1¥2¥3 7€l _, (x1,y1)

= > ko x kg * (kg k)" ™% (X1, ¥1) kg (X2,¥2) Ka(X3, ¥3)

X=X1X2X3,Y=Y1Y2Y3
— ko * ka * (kg * ka)nil (XJ Y)J
(1.19)

Going back to the proof of theorem 1.7, let n > 0 and (x,y) € X. Observing
that any alignment 7 € II,(x,y) is in fact an element of II2(x;,y;) where
X1 =1 Try(n) ANA Y1 = Y1 Yry(n), We Can write

Z exp (Bs(x,y,m)) = Z Z exp (Bs(x1,y1,7))

rell, (x,y) x=X1X2,y=y1y2 €Il (x1,y1)
= Z ko * ko % (kg % k)™ (x1,¥1)
X=X1X2,y=Y1Y2
= kO * ka * (kg * ka)n_l * kO(Xa y)a
(1.20)

where the first equality is obtained by organizing the alignments in terms of 7 (n)
and 73 (n), the second is the consequence of lemma, 1.9, and the last is the definition
of convolution. (1.9) now follows by summing this equality over n.

2004/07/27 10:51
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In order to prove (1.10) we derive from (1.9) the following:

1 1
glogkia(xy)=glog | > exp(fsxy,m)
m€I(x,y)
1
= SW(x,y) + 3 log | > exp[B(s(x,y,m) — SW(x,y))]
mell(x,y)
(1.21)
By definition of the SW score (1.2) it follows that:
lim log | Y exp[8(s(x,y,m)—SW(x,y))] | =logl, (1.22)

e \selitey)
where [ is the number of alignments in II(x,y) with maximal alignment. (1.10) is
now a consequence of (1.21) and (1.22), which concludes the proof of theorem 1.7.
|

Appendix B: Proof of Theorem 1.8

For any sequences (x,y) € X2 let us first introduce some notations. For 0 < i < |x]|
and 0 < j < |y|, we define the following sets of alignments:

I ; == {r € M(x,y)\{0} : m(|x]) <i,ma(|7]) < j},
9, = {m € Wy ; : m(|n]) = i,ms(|7]) = j},
(
(

1 : . (1.23)
Hi,j = {ﬂ- € Hi,j :7T1(|7T|) <1, |7T|) = .7}7
Hz?’j i=A{r €I ; : m(|n]) <i,me(|7]) < j}.

Hence II; ; is the set of alignments that only involve up to the first ¢ and j letters
of x and y, and the three subsets II{ ;, TI; ;, and TI7; form a partition of TI; ;.
Let us also introduce a score s; ; for the alignments of II; ; derived from the local

alignment score (1.1) by
Vr €Ilij,  si;(m) :=s(m) — g (i —m(|7])) — g (G — m(l7]). (1.24)

In other words, s;; is an alignment score that penalizes the unaligned part after
the last aligned letters, contrary to s. With these definitions we can state a key
lemma that explains the meaning of the functions computed in theorem 1.8

2004/07/27 10:51
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Lemma 1.10 With the notations of theorem 1.8, the following equalities hold for
0<i<|x| and 0<j<ly|:

M(ij)= 3 exp(Bsiy(m) = 3 exp(Bs(m),

€l ; €l ;

X(i,5) = Y exp(Bsi;(m)),

el

Yi,5)= 3 exp(Bsi;(m),

mell?;

Xa(i,5) = ) exp(Bs(m),

Y5(i,5) = ) exp(Bs(n)).

2
wellf ;

Proof This lemma is proved by induction in (¢,5). If ¢ = 0 or j = 0, then
II;; = 0 and the statements are true. To prove the statements for i > 0 and
j > 0, consider first the statement about M (i,7). Let f: II(x,y) — II(x,y) be the
application that removes the last pair of aligned position in an alignment. Then
f is clearly a bijection between Hg’oj) and II;_q ;1 U {0}, and s(m) = s;(n) =
si-1,j-1(f(7)) + S(xi, y;) for any 7 € TIY ;. We therefore can write

> exp(Bs(m))

m€l ;

> exp(Bsi;(m))
TI'EH?’J-
= > exp (Bsi—1,j-1(m) + BS (i, y;))
w€ll;_1, ;_1U{0}
=eP5@u) (MG —1,j - 1)+ X(Gi—-1,j—1)+Y(@—1,j—1)+1)
= M(i7.7)7

where the third equality uses the induction hypothesis and the fourth one the
definition of M(i,7). The same approach can be followed to prove the other
statements of lemma 1.10, so we don’t explicitly write them down for lack of space.

]

Let m = |x| and n = |y|. theorem 1.8 is now a direct consequence of lemma 1.10
by using (1.9) and observing that II(x,y) = IL,, , is the disjoint union of {§}, I1°

m,n’

1 2
I, , and II7, .. ]
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