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Résumé: Nous présentons un algorithme pour extraire des tendances d’activité de
voies métaboliques & partir de données d’expression de génes. L’algorithme repose
sur I'idée que de telles tendances sont susceptibles d’étre corrélées avec les profiles
d’expression des génes participants aux réactions concernées, qui forment un sous-
graphe connexe du graphe représentant ’ensemble des voies métaboliques connues.
L’algorithme consiste & encoder les profiles d’expression et les réseaux métaboliques
connus dans deux fonctions noyaux, et a effectuer une forme généralisée d’analyse
de corrélation canonique dans les expaces & noyau auto-reproduisants associés.
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1 Introduction

Almost every chemical reaction taking place in a living organism is catalyzed by
proteins, usually synthesized by the organism itself. Evidences suggest that the
biochemical activity in a cell is precisely controlled by the quantity of proteins
available, which are synthesized or eliminated to ensure the correct activation or
inhibition of reactions. Proteins are created from RNA, which are copies of the
blueprints of the proteins on the DNA of the organism, and it is believed that the
quantity of a given RNA in a cell is strongly correlated with the quantity of the
corresponding proteins.

Microarray technology enables the monitoring of the quantity of RNA for virtu-
ally all proteins of an organism simultaneously. Independently, many biochemical
process (known as metabolic or signalling pathways) have been characterized during
decades of biochemical experiments, and recently integrated into databases. The
KEGG database (Kanehisa et al., 2002) contains for instance the list of all known
reactions arranged into pathways (series of reactions taking place one after another),
together with the genes which catalyze each reaction. The algorithm we present in
the sequel aims at comparing series of microarray expression data with such a path-
way database, in order to extract typical patterns of expression which are likely to
correspond to actual biochemical events.



2 The problem

The set of genes of a given organism is represented by a discrete set X of cardinality
|X| = n. The set of expression profiles is a mapping e : X — RP, where p is the
number of measurements and e(z) is the expression profile of gene z. In the sequel
we assume that the set of profiles has been centered, i.e., > . e(z) = 0, and scaled
to unit norm (Vz € X, |le(z)|| = 1).

The pathway database defines a network of genes represented by a graph I' =
(X,E), where two genes are linked whenever then catalyze two successive reactions
in the pathway database.

A pattern of expression is a profile v € RP. Our goal is to find patterns of
expression likely to correspond to biochemical events, more precisely to represent
the activity level of particular pathways. To this end we use the biological intuition
that for such a pattern v, the quantities of proteins (and of the corresponding RNA)
catalyzing the reactions involved are likely to be correlated or anticorrelated with

v. For a candidate pattern v let us therefore call f,(x) 2 v.e(x) the correlation
between v and e(x). As the genes involved in a given pathway typically form a small
connected subgraph of the graph I' (because they catalyze successive reactions), a
pattern v corresponding to the activity level of a pathway could be recognized by
the fact that the values of the function f,(.) are likely be particularly positive or
negative in particular connected subparts of the graph. As biochemical events such
as response to changes in the environnement or cell growth usually involve several
pathways, one way to recognize a relevant pattern v is therefore by the fact that
f»(.) might be particularly smooth with respect to the graph topology, at least be
smoother than a function f, (.) where v’ is not related to any biochemical process.
On the other hand, the smoothness of f,(.) on I' is not a sufficient criterion
to ensure that v is relevant. Indeed, one should also ensure that v be reasonably
correlated with the directions of large variations between profiles, otherwise smooth
functionals can be obtained artificially (consider for example the case p > n).

3 Approach using reproducible kernel Hilbert spaces
(RKHS)

Any pattern of interest can be written as a linear combination of profiles, v =
Y zex @ze(x). If we denote by K the linear kernel matrix K (z,y) = e(x).e(y), then
a simple computation shows that the quantity of variation among profiles captured
by the function f, is:
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where || f,||2, denotes the norm of f,(.) in the RKHS #; defined by K;. To ensure
that v is as correlated as possible with the first principal components of the set
of profiles, it is therefore enough to impose that || f,|[%, /|| fo||z2(x) be as small as
possible.



In order to quantify the smoothness of a function on the nodes of the graph, let
us now consider the diffusion kernel Ky defined by Ky = exp(—7L), where L is the
graph Laplacian of I', 7 is a parameter and exp(.) denotes the matrix exponential
(Kondor and Lafferty, 2002). The Laplacian matrix itself is defined by L,, = —1
if there is an edge between z and y, 0 otherwise (for x # y), and L, , is the degree
of x in I'. It is known in spectral graph theory that the discrete Laplacian shares
many properties with the continuous Laplacian on a Riemannian manifold. It is
symmetric, positive semidefinite, and singular. If {¢;,7 = 1,...,n} denotes an
orthonormal set of eigenvectors of L with eigenvalues 0 = A\; < ... < ), it is known
that ¢; oscillates more and more on the graph as ¢ increases and is called a Fourier
basis (Chung, 1997). The kernel K, has the same eigenvectors as L, but eigenvalues
1 = exp(—X;) > ... > exp(—A,). Hence the norm of a function f € A® in the
RKHS H, defined by the diffusion kernel K is given by:
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where f is the discrete Fourier transform (Vi € [1,n], fi = f-¢;). This shows that
the energy at high frequency is strongly penalized by this norm, and that ||.||3, is
a smoothness functional. In other words, scaling f to unit norm, we finally get that
the smoother a function f, the smaller || f||3,/|[f||L2(x)-

Let us now come back to the problem of finding a pattern v such that f, be
smooth on the graph and capture a lot of variation between profiles. For any function
f € X% on the graph, the correlation between f and f, is given by:
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which is maximized for any pair f = f,. An indirect way to find a function f,
smooth and which captures a lot of variation in the same time is to constraint f
to be smooth, f, to capture a lot of variation, and f and f, to be as correlated
as possible. From the previous paragraphs this can be done by modifying (2) and
considering the following problem:
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where 0 is a regularization parameter which controls the trade-off between correla-
tion on the one hand, smoothness of f and statistical relevance of f, on the other
hand. Formulated as (3) the problem appears to be a generalization of canonical
correlation analysis (CCA) known as kernel-CCA, discussed in (Bach and Jordan,
2002). The authors show in particular that (3) is equivalent to the following general-
ized eigenvalue problem, which can be solved using classical mathematical softwares:
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Solving (4) provides a series of pairs of functions (f, f,), equivalent to the extraction
of successive canonical directions with decreasing correlation in classical CCA.
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4 Experiments

We extracted from the LIGAND database of chemical compounds of reactions in
biological pathways (Kanehisa et al., 2002) a graph made of 774 genes of the bud-
ding yeast S. Cerevisiae, linked through 16,650 edges, where two genes are linked
when they catalyze two successive reactions in the LIGAND database (i.e, two re-
actions such that the main product of the first one be the main substrate of the
second one). We compared this graph with a set of 18 time series expression data
points corresponding to two cell cycles of the yeast S. cereviciae after release of
alpha factor. Figure 1 shows the first two patterns extracted. The first pattern is
essentially a strong positive signal immediately after the beginning of the experi-
ment. Several pathways positively correlated with this pattern are involved in energy
metabolism (oxidative phosphorylation, TCA cycle, glycerolipid metabolism), while
pathways negatively correlated concern mainly pathways involved in protein syn-
thesis (aminoacyl-tRNA biosynthesis, RNA polymerase, pyrimidine metabolism).
Hence the first pattern clearly detects the sudden change of environment, and the
priority to fuel the start of the cell cycle with fresh energetic molecules rather than
to synthesize proteins. The second pattern detects the progression in the cell cycle,
and is correlated with cyclic pathways such as DNA duplication.
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Figure 1: First 2 extracted patterns
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