Machine learning on the symmetric group
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What if inputs are permutations?

3421

/

/4321\
/

3412
4231

4312

@ Permutation: a bijection
o:[1,N] = [1,N]
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@ o(i) =rank of item /
@ Composition

(0102)(i) = o1 (02(7))

@ Sy the symmetric group
(] |SN| = NI




@ Ranking data

(histogram equalization, quantile normalization...)
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@ Batch effects,
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After Normalization



Learning from permutations

@ Assume your data are permutations and you want to learn
f:Sy - R
@ A solutions: embed Sy to a Euclidean (or Hilbert) space
®:Sy — RP
and learn a linear function:
fo(o) = 67 (o)
@ The corresponding kernel is

K(oy,02) = d(ay) " (o2)



How to define the embedding ® : Sy — RP ?

@ Should encode interesting features
@ Should lead to efficient algorithms

@ Should be invariant to renaming of the items, i.e., the kernel
should be right-invariant

Voy,00,m €Sy, K(oym,oom) = K(o1,02)



Harmonic analysis on Sy

@ A representation of Sy is a matrix-valued function p : Sy — C%*%
such that

Voi,02 € Sy, p(o102) = p(o1)p(o2)
@ A representation is irreductible (irrep) if it is not equivalent to the
direct sum of two other representations

@ Sy has a finite number of irreps {p» : A € A} where A = {\ - N}!
is the set of partitions of N

@ Forany f: Sy — R, the Fourier transform of f is

VAEN, T(pa) = f(o)pa(o)

oESN

AENfA= (N, ) with > ...> XN and YL, A =N



Right-invariant kernels

Bochner’s theorem

An embedding ¢ : Sy — RRP defines a right-invariant kernel
K(o1,02) = ®(01) T &(02) if and only there exists ¢ : Sy — R such that

VYoi,00 € SN, K(U1702):¢(05101)

and )
YAENA, d(pr) =0




Some attempts

Kendall SUQUAN

-l -

(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)



SUQUAN embedding (Le Morvan and Vert, 2017)

@ Let ®(0) =N, the permutation representation (Serres, 1977):
1 ifo(j)=1,
[ncr]ij - .
0 otherwise.

@ Leads to new approaches for supervised quantile normalization
(SUQUAN) and vector quantization



SUQUAN = SUpervised QUANItile normalization

@ Suppose ¢ = rank(x) with x ¢ RV
@ Rank-1 linear model on I,:

f(o) =< Mo, M >Fropenivs  With - M = A
@ Then
flo) =<, W’ >Frobenivs= WTnIf

@ N/ fis the quantile normalization of x with target quantile f

@ Learn M amounts to learning both the linear model w and the
target quantile f



Example: CIFAR-10

@ Discriminate images of horse vs. plane
@ Different methods learn different quantile functions

original median SUQUAN BND

vvvvvvvvvvvvvvvvvv



Limits of the SUQUAN embedding

@ Linear model on ®(c) = M, € RV*N

@ Captures first-order information of the form "i-th feature ranked at
the j-th position"

@ What about higher-order information such as "feature i larger than
feature j"?



The Kendall embedding (Jiao and Vert, 2015, 2017)

(o
"/( ) 0 otherwise.

{1 if (i) < o)),



Geometry of the embedding

For any two permutations o, ¢’ € Sy:
@ Inner product

O(0) Do) = D Lo(iy<o(Loiy<ory) = Nelo, o)
1<i#j<n

ne = number of concordant pairs
@ Distance

[(c) = Do) [P= D (Logh<o) — Loi<o())? = 2Na(0, ")

1<ij<n

ng = number of discordant pairs



Kendall and Mallows kernels

@ The Kendall kernel is
K. (o,0") = ne(o,0’)
@ The Mallows kernel is

VA>0 Kjij(o,0') = e aleo’)

Theorem (Jiao and Vert, 2015, 2017)

The Kendall and Mallows kernels are positive definite right-invariant
kernels and can be evaluated in O(N log N) time

Kernel trick useful with few samples in large dimensions



@ Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.

e Computationally intensive (O(N2N))
@ Mallows kernel is written as

Kif(o. o) = 6 nelo"

"~ // where ngy(o, o’) is the shortest path
- distance on the Cayley graph.

Cayley graph of S, @ It can be computed in O(Nlog N)
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Average performance on 10 microarray classification problems (Jiao

and Vert, 2017).



Higher-order kernels (Jiao and Vert, 2018)

®(0) =39

@ For d = 1, this is the SUQUAN embedding

@ For d = 2, this leads to a new weighted Kendall kernel, where
weights can optimized during training



Conclusion

SUQUAN

—)

@ Machine learning beyond vectors, strings and graphs

@ Different embeddings of the symmetric group

@ Scalability? Robustness to adversarial attacks? Differentiable
embeddings?

MERCI!
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The quantile normalization (QN) embedding

@ Data: permutation o € Sy where o(i)= rank of item/feature i
@ Fix a target quantile g € RN
@ Define ¢4 : Sy — RN by

Vo eSn,  [®q(0)]; = do(i)

@ "Keep the order, change the values"



How to choose a "good" target distribution?

gaussian distribution (mean=0, sd=1) uniform distribution bigaussian distribution
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SUQUAN (Le Morvan and Vert, 2017)

@ Learn after standard QN:
@ Fix g arbitrarily
© QN all samples to get ®4(01), ..., Pg(on)
© Learn a model on normalized data, e.g.:

. (1
[ = argmin {n ;gi <5T¢q(0i)> + AHﬁHZ}

BERN



SUQUAN (Le Morvan and Vert, 2017)

@ Learn after standard QN:
@ Fix g arbitrarily
© QN all samples to get ®4(01), ..., Pg(on)
© Learn a model on normalized data, e.g.:

5 . 1 4 A AT ) 2
B = aggerlg}vn {ngf, (ﬁ ‘Dq(U/)) + AllAll }

@ Supervised QN (SUQUAN): jointly learn q and the model:

B,qeRN

(5.@) = argmin {:7 St (8 0g(e)) + MR +vﬂ(q)}
i=1



Computing ®4(0)

For o € Sy let the permutation representation (Serres, 1977):
1 ifo(j)=1,
[na]ij = (j) .
0 otherwise.

Then
®y(0) =M, q



Linear SUQAN as rank-1 matrix regression

@ Linear SUQUAN therefore solves

min, { 5 (57 0a(0) + AlB12 + 19(a) |

B,geRN

. 1
= min {nﬁ,- (Bﬂ'l;q) + X812 + VQ(Q)}

B,geRN

, 1
= min {Ei << QﬂTa Mo, >Frobenius) + Al\ﬁ\lz ""VQ(q)}
B,qeRN (N

@ A particular linear model to estimate a rank-1 matrix M = g3 "

@ Each sample o € Sy is represented by the matrix I, € R"7*"
@ Non-convex

@ Alternative optimization of f and w is easy



Experiments: CIFAR-10

@ Image classification into 10 classes (45 binary problems)

@ N =5,000 per class, p = 1,024 pixels
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Experiments: CIFAR-10

@ Example: horse vs. plane
@ Different methods learn different quantile functions

original median SUQUAN BND
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@ The Kendall embedding



Limits of the QN embedding

@ Linear model on ®(c) = M, € RV*N

@ Captures first-order information of the form "i-th feature ranked at
the j-th position"

@ What about higher-order information such as "feature i larger than
feature j"?



Another representation

o1y(0) = {1 it o(i) < o(j)

0 otherwise.



Kendall and Mallows kernels

@ The Kendall kernel is

K.(0,0") = d(c)Td(o")
@ The Mallows kernel is

YA>0 Ki(o,0') = e Me@-e@)

Theorem (Jiao and Vert, 2015, 2017)

The Kendall and Mallows kernels are positive definite and can be
evaluated in O(Nlog N) time

Kernel trick useful with few samples in large dimensions



For any two permutations o, ¢’ € Sy:
@ Inner product

(o) O(o) = > Loy loi<o) = Nelo,0")

1<i#<N
ne = number of concordant pairs
@ Distance
[0(c) = D) [P= D (Loih<op) — Lo(iy<or()® = 2na(0, ")

1<ij<N

ng = number of discordant pairs
n¢ and n¢ can be computed in O(Nlog N) (Knight, 1966)



Related work

@ Kondor and Barbarosa (2010)
</\\ proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.

/\/ @ Computationally intensive (O(N2N))

\ X( @ Mallows kernel is written as

\ Kii(o.0') = e 2mal2),
/2“3 1324 / .
~_ // where ng(o, o’) is the shortest path

distance on the Cayley graph.
Cayley graph of Sq @ It can be computed in O(Nlog N)
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Constraints on f

@ Ridge
1P
Fo={feRP: -S> A<ty
Pz
@ Non-decreasing
Fenp = FoNZy, where IoZ{fERp Ch<h<... < fp}
@ Non-decreasing and smooth

p—1
Fspav = {fGIo ; Z(O’H —f)E < 1} :

=



SUQUAN-BND and SUQUAN-PAVA

Algorithm 2: SUQUAN-BND and SUQUAN-SPAV

Input: (z1,%1),.. -, (®Tn,Yn), finit € Lo, AER
Output: f € Z; target quantile
1: for i =1 to n do
2:  rank;,order; < sort(z;)
3: end for
4w, b argn?in% i b (wT finit[ranks] +b) + Aljw||?
(standard linear model optimisation)
5. f < argmin 2 3" ¢; (fTwlorder;] + b)
f€FBND
(isotonic optimisation problem using PAVA as prox)
OR
f+ argmin 237" ¢ (fTwlorder;] +b)
fE€Fspav
(smoothed isotonic optimisation problem using SPAV as prox)

@ Alternate optimization in w and f, monotonicity constraint on f

@ Accelerated proximal gradient optimization for f, using the Pool
Adjacent Violators Algorithm (PAVA, Barlow et al. (1972)) or the
Smoothed Pool Adjacent Violators algorithm (SPAV, Sysoev and
Burdakov (2016)) as proximal operator.



A variant: SUQUAN-SVD

Algorithm 1: SUQUAN-SVD

Input:
(x1,y1), EER] (xmyn) €RP x {711 1}

Output: f € F target quantile

: Mppa + 0 € RP*P

sngn e {0y = 1Y

PN |{l LY = —1}‘

: for i =1 ton do

Compute II,, (by sorting ;)

Mppa < Mppa+ %Hzm

: end for '

: (U, w, f) — SVD(]MLDA, 1)

© N DT W e

@ Ridge penalty (no monotonicity constraint), equivalent to rank-1
regression problem
@ SVD finds the closest rank-1 matrix to the LDA solution:

]
Mo= - 3 M- 3,
tiy=t M=

@ Complexity O(npIn(p)) (same as QN only)



Experiments: Simulations

@ True distribution of X entries is normal

@ Corrupt data with a cauchy, exponential, uniform or bimodal
gaussian distributions.

@ p = 1000, nvaries, logistic regression.
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	The Kendall embedding

