New matrix norms for structured matrix estimation
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0 Atomic norms



Atomic Norm (Chandrasekaran et al., 2012)

Definition
Given a set of atoms A, the associated atomic norm is

| X||4 = inf{t > 0| x € tconv(A)}.

NB: This is really a norm if A is centrally symmetric and spans RP

Primal and dual form of the norm
IX|la = inf{an | x=) caa, ¢ca>0, VaeA}

acA acA

IxI%s = sup(a,x)
acA




Examples

@ Vector ¢1-norm: x € RP — ||x||1
A={+te | 1<k<p}
@ Matrix trace norm: Z € R™>*™2 || Z||,. (sum of singular value)

A={ab” : acR™,beR™ |alz=|blz=1)




Group lasso (Yuan and Lin, 2006)

Forx e RPand G = {94, ...,9g} a partition of [1, p]:

Ixll12 =" II%gll2
geg
is the atomic norm associated to the set of atoms

Ag = J{ueRP : supp(u) =g, ul>=1}
geg

g={1.2},{3}}

X122 = 11X, %) |2 + [|x3]]2

_ [, 2 2
=X X /X3




Group lasso with overlaps

How to generalize the group lasso when the groups overlap?
@ Set features to zero by groups (Jenatton et al., 2011)

[x 2= Z I Xg |2

geg
@ Select support as a union of groups (Jacob et al., 2009)

X [.4g
see also MKL (Bach et al., 2004)

1 1

05~

g= {{172}7{273}}




9 Sparse matrices with disjoint column supports



Joint work with...

Kevin Vervier, Pierre Mahé, Jean-Baptiste Veyrieras (Biomerieux)

Alexandre d’Aspremont (CNRS/ENS)




Columns with disjoint supports

@ Motivation: multiclass or multitask classification problems where
we want to select features specific to each class or task
@ Example: recognize identify and emotion of a person from an

image (Romera-Paredes et al., 2012), or hierarchical
coarse-to-fine classifier (Xiao et al., 2011; Hwang et al., 2011)



From disjoint supports to orthogonal columns

@ Two vectors v4 and v, have disjoint support iff |v{| and |v»| are
orthogonal

@ If Qormo(X) is @ norm to estimate matrices with orthogonal
columns, then

Quisjoint(X) = Qortho(|1X[) = B ani)P< w Qortho(W)

is a norm to estimate matrices with disjoint column supports.
@ How to estimate matrices with orthogonal columns?
@ NOTE: more general than orthogonal matrices



Penalty for orthogonal columns

@ For X = [x1,...,Xp] € R™P we want
X' xj=0 for i#]j
@ A natural "relaxation":

20X) = 3 [ x|
i#]

@ But not convex



Convex penalty for orthogonal columns

p
u(X) = D Kill x|+ 3 Ky x|
=1 i#]

Theorem (Xiao et al., 2011)

If K is positive semidefinite, then Q is convex, where

g _ JIKil ifi=],
ij = .
— | Kj| otherwise.




Can we be tighter?

p
2 T
Q(X) =D Ix[P+ > Kj| x Xj‘
= 7
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Can we be tighter?

p
Qu(X) =D 1012+ > Ky x|
i=1 i#]

@ Let O be the set of matrices of unit Frobenius norm, with
orthogonal columns

0= {X € R™P : X' X is diagonal and Trace(X ' X) = 1}

@ Note that
VX eO, Q(X)=1

@ The atomic norm || X ||» associated to O is the tightest convex
penalty to recover the atoms in O!



Optimality of Qk for p =2

Theorem (Vervier, Mahé, d’Aspremont, Veyrieras and V., 2014)

For any X € R™2,

IX 115 = Qk(X)

(11,
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Case p>2

® Qu(X) # | X%

@ But sparse combinations of matrices in O may not be interesting
anyway...

Theorem (Vervier et al., 2014)

For any p > 2, let K be a symmetric p-by-p matrix with non-negative
entries and such that,

Vi=1,....p K,-,-:ZK,-,.
j#i

Then
Qi (X) =D Kl (xi, %) 15

i<j




Simulations

Regression Y = XW + ¢, W has disjoint column support, n=p =10
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Example: multiclass classification of MS spectra

Spectra

Features



e Low-rank matrices with sparse factors



Joint work with...

Emile Richard (Stanford)




Low-rank matrices with sparse factors

r

X Z uiv;'

i=1

X %E

@ factors not orthogonal a priori
@ # from assuming the SVD of X is sparse



Dictionary Learning

Dictionary Learning

@ e.g. overcomplete dictionaries
for natural images

@ sparse decomposition
@ (Elad and Aharon, 2006)



Dictionary Learning /Sparse PCA

n n
Amiknxnz||Xi—Da/||§+>\Z||afH1 st. V), [ldll2 < 1.
Dgﬂﬂipxk i—1 i—1

Dictionary Learning Sparse PCA

i i
@ e.g. overcomplete dictionaries @ e.g. microarray data

for natural images @ sparse dictionary
@ sparse decomposition @ (Witten et al., 2009; Bach et al.,
@ (Elad and Aharon, 2006) 2008)

Sparsity of the loadings vs sparsity of the dictionary elements



Applications

@ Low rank factorization with “community structure”
Modeling clusters or community structure in social networks or
recommendation systems (Richard et al., 2012).

@ Subspace clustering (Wang et al., 2013)
Up to an unknown permutation, X™ = [X{" ... X/]
with X, low rank, so that there exists a low rank matrix Z; such
that Xy = Zx X. Finally,

X=2X with Z=BkDiag(Z,...,Zx).

@ Sparse PCA from %,
@ Sparse bilinear regression

y=x"Mx+e¢



Existing approaches

@ Bi-convex formulations

min L(UVT) + AUl + V1),

with U € R™" V € RP*.

@ Convex formulation for sparse and low rank

min £(Z) + AllZ]|1 + ullZ]ls

e Doan and Vavasis (2013); Richard et al. (2012)
o factors not necessarily sparse as r increases.



A new formulation for sparse matrix factorization

Assumptions:

r
X = Z a,-b,-T
i=1

@ All left factors a; have support of size k.
@ All right factors b; have support of size q.

Goals:

Propose a convex formulation for sparse matrix factorization that
@ is able to handle multiple sparse factors
@ permits to identify the sparse factors themselves
@ leads to better statistical performance than ¢4/trace norm.
Propose algorithms based on this formulation.



The (k, g)-rank of a matrix

@ Sparse unit vectors:
Al ={aeR" : |lalo </ llall2 =1}

@ (k,q)-rank of a my x my, matrix Z:

,
I’k,q(Z) = min {I’ 2= Z C,'a,'b,-T, (ai, bj, ci) € .AZH ><Ag'2 XR.,_}

i=1

= min {H clo: Z= Z ciaib; . (ai, bi, ¢i) € AZ" x Ag? XR+}

i=1
Z % f/(,q(Z) =3




The (k, g) trace norm (Richard et al., 2014)

For a matrix Z € R™M*™ we have

combinatorial penality 1Z1]o rank(Z)

convex relaxation 1Z1]1 | Z]|«




The (k, g) trace norm (Richard et al., 2014)

For a matrix Z € R™M*™ we have

(1,1)-rank | (k, g)-rank | (my, my)-rank
combinatorial penality 1Z1]o rk.q(£) rank(Z)
convex relaxation 1Z1]1 | Z]|«




The (k, g) trace norm (Richard et al., 2014)

For a matrix Z € R™M*™ we have

(1,1)-rank | (k, g)-rank | (my, my)-rank
combinatorial penality 1Z1]o rk.q(£) rank(Z)
convex relaxation I Z]]4 Qk.q(2) | Z]|«

The (k, g) trace norm Qy 4(Z) is the atomic norm associated with

Akg:={ab' |ac A", be AF?},

namely:

Qk7q(Z) = inf {HCM 1 Z= Z c,-a,-b,-T, (ai, b, ci) € .AZH XAZE XR+}

i=1




Some properties of the (k, g)-trace norm

Nesting property:

Qmymy(2) = 1211+ < Qe q(2) < (12111 = 21.4(2)

Dual norm and reformulation

@ Let || - ||op denote the operator norm.

o LetGxq={(/J)c [1,m] x [1,m2], |I| = k,|J| = q}
Given that || x||*y = supc 4 (&, X), we have

k(@)= max |21, and

Quq(Z) = inf{ Z |AM|, - Z= Z AM) - supp(AM) li}

(1,J)€Gk.q (1,J)€Gk,q



Vector case

When g = my =1, Q 1(x) is the k-support norm of Argyriou et al.
(2012), i.e., the overlapping group lasso with all groups of size k.

\‘




Statistical dimension (Amelunxen et al., 2013)

Z*

figure inspired by Amelunxen et al. (2013)

8(2,9) =E [N (0)]2,]



Nullspace property and & (Chandrasekaran et al., 2012)

Xo + null(A) Xo + null(A)

X0

{x: f(x) = flxo)} {x: f(x) = f(xo)}

X0 +2(f, x0) xo+ 2(f, x0)

Figure from Amelunxen et al. (2013)

Exact recovery from random measurements
With X : RP — R” rand. lin. map from the std Gaussian ensemble

Z= argmin Q(Z) sth. X(Z2)=y
Z

is equal to Z* w.h.p. as soonas n> &(Z*+,Q).



Statistical dimension of the (k, q)-trace norm

Theorem (Richard et al., 2014)
Let A= ab" € Ak q with ly = supp(a) and Jy = supp(b).

Let ~(a, b):= (k mina?) A (g minbf),
i€ly JED

we have

322 160
S(A, Qk q) < ?(k +g+1)+ T(k v qg)log (my v my) .

Case my = mo, k =q:

322 160
S(A,Quq) < ~5-(2k+ 1)+ ——Klog (m)



Summary of results for statistical dimension

Matrix norm (G} Vector norm S

2 O(kq log 7?) 2 O(klog R)
trace-norm O(my + my) U p
¢4 + trace Q(kg A (my + my)) elastic net | ©(klog %)
(k,q)-trace | O((kV q)log(my Vv ms)) k-support | ©(klog ?)

Lower bound for £+ trace norm based on a result of Oymak et al. (2012)
f = ©(g) means (f = O(g)&g = O(f))

f = Q(g) means g = O(f)



Working set algorithm

mZin L(Z) + X2 ,4(2)

Given a working set S of blocks (/, J), solve the restricted problem

min Z)+ A AW
L, ED Y
Z=) A" supp(A¥) C Ixd.
(1J)es

Proposition

The global problem is solved by a solution Zs of the restricted problem
if and only if

V(1,J) € G, | [vg(zs)],JHop < (%)




Working set algorithm

Active set algorithm

lterate:
@ Solve the restricted problem by block coordinate descent (Tseng
and Yun, 2009)
@ Look for (/,J) that violates (%)

o If none exists, terminate the algorithm !
o Else add the found (/,J) to S

Problem: step 2 require to solve a rank-1 SPCA problem — NP-hard

Idea: Leverage the work on algorithms that attempt to solve
rank-1 SPCA like

@ convex relaxations,
@ truncated power iteration method
to heuristically find blocks potentially violating the constraint.



Denoising results

@ Z € R1000x1000 with 7 = S~ a;b + oG and aib € Ak q
@ k=gq
@ o2 small = MSE x &(ab",Q q) 02

(k,k)-rank = 1
10° . T
- I
s —¥— Trace
10 _e_ Qk a |
10*
o o
= =
4 5 =z
10
10°
10 ; ; 100 ; ; ; ;
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k (k,q)-rank



Denoising results

@ [Z € R300x300 and o2 small = MSE x &(ab", Qx,q) 0]
@ r = 3 atoms, with or without overlap

No overlap 90 % overlap

NMSE
NMSE




Empirical results

k>

10 20

8

Trace+-|1

Ground truth

10 20 30
0 02 04 08
Sample covariance Trace 0y Trace + ¢1 | Sequential Q-
4.20 + 0.02 0.98 £ 0.01 | 2.07 £ 0.01 | 0.96 £ 0.01 | 0.93 £ 0.08 | 0.59 £+ 0.03

Table 3: Relative error of covariance estimation with different methods.




Conclusion

@ Atomic norms for structured sparsity

@ Gain in statistical performance at the expense of algorithmic
complexity (convex but NP-hard)

@ The structure of the convex problem may be exploited to devise
new efficient heuristics or relaxations
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