Supervised Gene Network Inference

Jean-Philippe Vert
Ecole des Mines de Paris
Computational Biology group
Jean-Philippe.VertOmines.org



Motivations: systems biology

Gene expression
Sequence

Protein structure
Protein localization,

etc...

Regulatory network
Signaling pathways
Metabolic pathways
Interaction network, etc...



Outline

A direct approach to network inference

Supervised network inference




Part 1

A direct approach to network
inference




Related approaches

Bayesian nets for regulatory networks (Friedman et al. 2000)

Boolean networks (Akutsu, 2000)




Example: nearest neighbors method
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Evaluation of the performance : the ROC curve
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Application: the metabolic gene network
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Performance of metabolic network reconstruction

The metabolic network of the yeast involves 769 genes. Each gene is
represented by 157 expression measurements. (ROC=0.52)
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What is wrong?

What similarity measure between profiles should be use?
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What is wrong?

What similarity measure between profiles should be use?

Which network are we expecting to recover?




11

Part 2

Supervised network inference
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The supervised gene inference problem

Similarity matrix of the other genomic data

protein 1, M o(e.q., N=20)
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The supervised gene inference problem

Similarity matrix of the other genomic data Adjacency matrix of protein network

Unknown Pathway

=10, N=20)

g.. h

=
~d
I
=2
.II; .

M (e

Lhl,

protein 1,..,

15

protein 1, M o(e.q., N=20) protein 1,.., n, n+1,.., M (e.g., n=10, N=20)
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The main idea

Supervised graph inference
through
distance metric learning
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through
distance metric learning
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Learning the mapping ¢

Let x € RP be an expression profile
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Let x € RP be an expression profile
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Learning the mapping ¢

Let x € RP be an expression profile

Let us consider linear mappings:

®(z) = (fi(2), ..., fa(z))’ € R?
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“Good” features

A “good” feature f(x) = w'x should minimize:
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“Good” features

A “good” feature f(x) = w'x should minimize:
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Influence of )\

A — +oo : PCA

* Useful for noisy, high-dimensional data.
* Used In spectral clustering. The graph does not play any role
(unsupervised)
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Extracting successive features

Successive features to form ® can be obtained by:
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Extracting successive features

Successive features to form ® can be obtained by:

wi=  argmin S (Fuls) = Ful@y)? + Allw]

wl{wy,...,w;_1},var(fy)=1 i~
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Extension to non-linear features

In order to allow nonlinear features, we need to replace:

* [[wl]* by || F1I*
*’LUZ'J_’U)]' byfzJ_fJ




20

Positive definite kernels

Let X be a set endowed with a symmetric positive definite kernel
k:X? SR, ie.,

i i CZ'Cjk(CEi, Cl?j) 2 0

i=1 j=1
for any n >0, (x1,...,2,) € X and (ay,...,a,) € R
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Reproducing kernel Hilbert space

A p.d. kernel defines a Hilbert space of functions f : X — R
obtained by completing the span of {k(x,-),x € X'}

The norm of a function f(z) = >

1=

| Cik (s, ) is:
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Example: linear RKHS

For X = R and k(z,y) = x - y, we have:

flx)=> " cxi-x= fu(x)withw=>".", c;z;.

1f1le = 225 =1 cocimi - @5 = ||wl|?
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Graph-driven feature extraction in RKHS

For a general set X endowed with a p.d. kernel k& we therefore
have the following graph-driven feature extractor:

arg min (f(z5) = f(z3))° + M| f]|2

fi
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Solving the problem

By the representer theorem, f; can be expanded as:

fz(ib‘) — Z Cki,jk(ibi, .CB)
Ag=1
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Solving the problem (cont.)

The problem can then be rewritten:

o KyLKya + ' Kya
al Ko

o = arg min
acR" aKyaj=...=aKya;_1=0
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Evaluation of the supervised approach:

ROC as a function of regularization (with 1 feature)

15 20 25 30 35 40 45 50
Regularization parameter (lambda)

Metabolic network, 10-fold cross-validation, 1 feature

effect of )\
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Evaluation

of the supervised approach: number of
features (\ = 2)

ROC as a function of number of features (lambda=2)

28



Part 3

Extraction of pathway activity
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The idea

The previous approach is a way to extract features from gene

expression data: f(z) =w'x.

These features are smooth on the graph: connected nodes tend to
have similar values
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lllustration
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Experiment

Gene network: two genes are linked if the catalyze successive
reactions in the KEGG database (669 yeast genes)

Expression profiles: 18 time series measures for the 6,000 genes of
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First pattern of expression
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Related metabolic pathways

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)




Related genes

JAE ¢ REDUC TASE
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Related genes

SULFUE METABGLIEM | RELUC TION AND FIXATIGN
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Related genes

SELENOAMING ACID METABOLISM
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Opposite pattern
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Related genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)

Aminoacyl-tRNA biosynthesis (7)




RHA polvmeraze I1

Related genes
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Related genes
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Second pattern
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Part 4

Learning from several
heterogeneous data




Summary of the process

Similarity matrix of the other genomic data

Features
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Kernels

Several similarity kernels have been developed recently:

for phylogenetic profiles (JPV. 2004)

for gene sequences (Leslie et al. 2003, Saigo et al. 2004, ...)
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Learning from heterogeneous data

Suppose several data are available about the genes, e.g., expression,
localization, struture, predicted interaction etc...

Each data can be represented by a positive definite similarity matrix
Ki,..., K,




Learning from heterogeneous data (unsupervised)

ROC curves: Direct approach
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Learning from heterogeneous data (supervised)

ROC curves: Supervised approach
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Application: missing enzyme prediction
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The gene YJR137C was predicted in 09/2003 between EC' : 1.8.4.8
and EC : 2.5.1.47. It was recently annotated as EC:1.8.1.2
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Conclusion
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Conclusion
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Conclusion

1. Supervised inference is better than unsupervised

2. Supervised graph inference can be performed by distance
metric learning

3. Data integration with kernels is simple and powerful
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