Network inference
and
Inference on networks




Motivations

Large-scale graphs are nowadays ubiquitous in many research fields
in particular genomics/biology...

Large-scale high-throughput technologies, systems biology, ...




Internet




Social Network
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Protein interaction network




Spatial data




Two important problems

Inferring network from observation about individual nodes.

* Application:  gene network inference, protein interaction
inference, gene regulation, metabolic pathways....
* ldea: “similar’ nodes should be connected
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Problem 2
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Part 1

Supervised gene network
inference
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Motivations

Most biochemical /biological processes involve interactions between

genes

Deciphering these interactions is the next big challenge in
systems biology"”

computational biolo
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The network inference problem

Given some measurement/observation about the genes (sequences,
structure, expression, ...), infer “the” gene network
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Related approaches

Bayesian nets for regulatory networks (Friedman et al. 2000)

Boolean networks (Akutsu, 2000)




16

A direct (unsupervised) approach

Let K (x,y) be a measure of similarity (a kernel) between genes x
and y based on available measurements, e.g.,

le(z) — e(y)||2>

202

K(z,y) = exp (—




Example of similarity matrix

Similarity matrix of the other genomic data
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protein 1,.., M (e.q., N=20)
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Evaluation of the direct approach

The metabolic network of the yeast involves 769 genes. Each gene is
represented by 157 expression measurements. (ROC=0.52)
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The supervised gene inference problem

Similarity matrix of the other genomic data

protein 1, M o(e.q., N=20)
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The supervised gene inference problem

Similarity matrix of the other genomic data Adjacency matrix of protein network

Unknown Pathway

protein 1,.., 0, n+l L, Nofeag., n=10, MN=20)

protein 1, M o(e.q., N=20)

19



20

The idea in a nutshell

Use the known network to define a more relevant measure of

similarity

For any positive definite similarity n X n matrix, there exists
a representation as n-dimensional vectors such that the matrix
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A two-step strategy

First map any gene x onto a vector

®(z) = (fi(2), ..., fa(z))" € R?
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Criterion for f

A feature f : X — R is good on the training set if connected genes
have similar value. A possible criterion is:

R(fy= > (fl@)—fw)’—- Y (fl)—f®)’

(z,y)€E (z,y)¢E
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Working in rkhs

Searching for features f : X — R in the rkhs H defined by the
kernel K, this suggests the following optimization problem:

min (f(=) = f(y)” + Al f1)%

f€Ho
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Solving the problem

By the representer theorem, f can be expanded as:

flx) = Z a; K(x;,x).
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Solving the problem (cont.)

The problem can then be rewritten:

min {aTKOLKOa -+ )\aTKoa}
aERM

under the constraint o' K2 = 1, where:
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Solving the problem (cont.)

The problem can then be rewritten:

min {aTKOLKOa -+ )\OéTKoOé}
aERM

under the constraint o' K2 = 1, where:
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Evaluation of the supervised approach:

ROC as a function of regularization (with 1 feature)

15 20 25 30 35 40 45 50
Regularization parameter (lambda)

Metabolic network, 10-fold cross-validation, 1 feature

effect of )\
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Evaluation

of the supervised approach: number of
features (\ = 2)

ROC as a function of number of features (lambda=2)
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Learning from heterogeneous data

Suppose several data are available about the genes, e.g., expression,
localization, struture, predicted interaction etc...

Each data can be represented by a kernel matrix Ky,..., K,




Learning from heterogeneous data

ROC curves: Direct approach
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Learning from heterogeneous data (supervised)

ROC curves: Supervised approach
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Extensions

The Laplacian can be replaced by another inverse of a graph kernel
(e.g., of a diffusion kernel)

Other formulations can lead to kernel CCA (NIPS 02)
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Open questions / Ongoing work

What should be the number of features (problem of embedding a
graph in low dimension)

Other cost functions
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Part 1

Inference on networks

(ongoing work in progress)
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Motivations

Data can sometimes be represented naturally as nodes of a network

Networks are convenient to define a global structure from local
similarities




Problem 2
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Problem 2
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General approach

The vertices V= V; U V,, are either labeled (V}) or unlabeled (V)

For any function f : V — R, use the graph to define a “prior”
functional Q(f) (the smaller Q(f), the more likely f.
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General approach (cont.)

Find the best trade-off:

f = argminL(f(Va), yu) + AQ(f)
f:V—R
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The “prior” on f

A “likely” label assignment should vary smoothly on the graph

A general smoothness functional for f € RY is
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Prior examples

Let a graph with weight W; ; between vertices x; and z;

Let D the diagonal matrix with D; ; = . W, ;
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Prior examples (cont.)

Average weighted variations:
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Perfect regression (Zhu et al. 2003)

f; must fit exactly v;:

f: argmin  f'Lf
f:V=R, f(Vi)=y,
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Noisy regression (Belkin et al. 2003; Zhu et al.
2003)

The loss function is mean squares:

A
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Interpretation: diffuse labels by iterating

fey1=(ay +1—-1L)Lf + (1 —a)liy
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Other applications

Dimensionality reduction (Belkin et al., 2001):

f= argmin = A\f'Lf
f:V—RE fTDf=1
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Conclusion




48

Conclusion

A new approach to supervised network inference, many possible
variants and extensions

Inference on networks is a rapidely expanding field with impressive
VIore ' I




